The increasing necessity of challenging wellbore structures and drilling optimization for improved hole cuttings cleaning has been growing along time. As a result, operator companies have been researching and applying different hole cleaning techniques. Some of these are applied as traditional rules of thumb but are not always suitable for the new and up-coming challenges. This may result in inefficient hole cleaning, non-productive times, pipe stocking and low rate of penetration (ROP), among other problems. Here are presented some results and improvements for hole cleaning optimization obtained by the different research groups. The different authors mainly focus on specific cuttings transport parameters and sometimes combination of some of them. For this reason, there has not been a study that takes into account all of the different factors at the same time to accurately predict the cuttings bed height, formation and erosion, critical fluid velocity and properties and other key parameters. Consequently, there is a lack of understanding about the relation between different factors, such as the cohesiveness of the drilled cuttings with the different interstitial drilling fluids within the cuttings-bed. This relation can be analyzed establishing a wet-granular approach to obtain more efficient cuttings transport mechanism in challenging conditions.
The cuttings transport efficiency of various drilling fluids has been studied in several approaches. This is an important aspect, since hole cleaning is often a bottleneck in well construction. The studies so far have targeted the drilling fluid cuttings’ transport capability through experiments, simulations or field data. Observed differences in the efficiency due to changes in the drilling fluid properties and compositions have been reported but not always fully understood. In this study, the cuttings bed, wetted with a single drilling fluid, was evaluated. The experiments were performed with parallel plates in an Anton Paar Physica 301 rheometer. The results showed systematic differences in the internal friction behaviors between tests of beds with oil-based and beds with water-based fluids. The observations indicated that cutting beds wetted with a polymeric water-based fluid released clusters of particles when external forces overcame the bonding forces and the beds started to break up. Similarly, it was observed that an oil-based fluid wetted bed allowed particles to break free as single particles. These findings may explain the observed differences in previous cutting transport studies.
Cuttings-beds formation while drilling wellbores is a common challenge, especially for horizontal wells, as drilled particles have higher area to be deposited and form cuttings-beds, which can cause several problems such as, increased torque and drag, pipe sticking or pipe breakage, among others. Removal of the drilled-cuttings is done by circulating a suitable drilling fluid through the wellbore. This paper presents results from laboratory tests with deposited cuttings-bed and the flow of a fluid to erode the bed. The simulated cuttings-bed is a 1m long deposited sand-bed in a horizontal section. Three different types of fluids are being used in the tests. To investigate how the rheological properties can affect the erodibility of the cuttings-bed, water (as a Newtonian fluid), a xanthan gum solution and a water-based drilling fluid prepared for an offshore field operation (as a non-Newtonian fluids) are applied. Ultrasound measurements together with differential bed weight have been used to analyze the fluid-bed interaction. Results have shown that the cuttings-bed is eroded by dune movement. Saltation and dragging of sand particles due to the fluid flow appear to create a crest and then avalanche them down. The different types of fluids undergo different shear rates from the same pump power as the viscosity changes, as well as flow rates dependency along the dune extent.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.