The surface plasmon resonances of gold nanospheres and nanorods have been measured as a function of hydrostatic pressure up to 17 GPa in methanol−ethanol 4:1 solvent and up to 10 GPa in paraffin. Both the sphere resonance and the longitudinal rod resonance exhibit redshifts, whereas the transverse rod mode shows an extremely weak redshift or blueshift depending on the nanorod aspect ratio. Solidification of the solvent around 11 GPa causes some aggregation of the particles, readily identified through broadening of the surface plasmon band and further redshifting. Spectra collected during loading and unloading cycles exhibit only minimal hysteresis if the pressure remains below 11 GPa. The surface plasmon shifts are the result of two competing effects. Compression of the conduction electrons in the metals increases the bulk plasma frequency, which causes a blueshift. However, the increase in the solvent density under hydrostatic load leads to an increase in the solvent refractive index, which in turn leads to a redshift. We find that after accounting for the solvent contribution, we can spectroscopically determine the bulk modulus of the gold nanoparticles with a precision of 10%. The value obtained of K 0 = 190 GPa is significantly higher than the value for bulk gold (167 GPa). Furthermore, we show that pressure-induced solidification causes a significant broadening and anomalous shift of the surface plasmon band that we attribute to aggregation and nanorod deformation.
The effects of hydrostatic pressure on the surface plasmon resonances (SPRs) of aqueous dispersions of monodisperse gold nanorods (AuNRs) were determined up to 9 GPa. The ultranarrow longitudinal SPR band of monodisperse AuNRs allows us to monitor a gradual red shift with pressure, which shows abrupt jumps at the liquid to ice phase VI and ice phase VII transitions. Despite solidifying at low pressure (∼1.8 GPa), water displays a regime of quasihydrostaticity in said phases VI and VII, up to ca. 5 GPa. Above this pressure, nonhydrostatic effects manifest themselves through broadening of the SPR bands, but barely any effect is observed on the position of the surface plasmon mode. The variation in the SPR peak wavelength with pressure allowed us to determine the pressure dependence of the refractive index of water. Unlike Brillouin scattering or interferometric techniques, this plasmon-spectroscopy-based method leads to a more direct determination of the refractive index, which is well described empirically by Murnaghan-type equations in the three explored phases. We report herein the obtained analytical functions providing the pressure dependence of refractive index in the liquid, ice VI, and ice VII phases of water.
The localized surface plasmon resonance (LSPR) of gold nanospheres dispersed in methanol–ethanol 4:1 was measured as a function of pressure up to 60 GPa. The LSPR exhibits an intense red-shift with pressure in the range of 0–10 GPa, followed by a slower blue-shift at higher pressures. This is because an increase in the solvent refractive index with pressure leads to a red-shift of the LSPR peak wavelength while an increase in the electron density of the gold nanospheres with pressure leads to a blue-shift. Solvent solidification at 10 GPa and associated nonhydrostatic effects have a negligible influence on the LSPR shifts in the case of nanospheres. Here we show that both the LSPR shifts and changes in the nanospheres absorption coefficient can be explained on the basis of Gans’ model, and this enables the solvent refractive index and the density of the solvent to be determined across the hydrostatic pressure range from 0 to 60 GPa. Interestingly, plasmonic sensing shows no evidence of crystallization or glass phase transitions in MeOH–EtOH 4:1 within the explored pressure range.
The density and compressibility of nanoscale gold (both nanospheres and nanorods) and microscale gold (bulk) were simultaneously studied by X-ray diffraction with synchrotron radiation up to 30 GPa. Colloidal stability (aggregation state and nanoparticle shape and size) in both hydrostatic and nonhydrostatic regions was monitored by small-angle X-ray scattering. We demonstrate that nonhydrostatic effects due to solvent solidification had a negligible influence on the stability of the nanoparticles. Conversely, nonhydrostatic effects produced axial stresses on the nanoparticle up to a factor 10× higher than those on the bulk metal. Working under hydrostatic conditions (liquid solution), we determined the equation of state of individual nanoparticles. From the values of the lattice parameter and bulk modulus, we found that gold nanoparticles are slightly denser (0.3%) and stiffer (2%) than bulk gold: V 0 = 67.65(3) Å 3 , K 0 = 170(3)GPa, at zero pressure.
The effects of nonhydrostatic pressure on the morphology and stability of gold nanorods (AuNRs) and nanospheres (AuNSs) in 4:1 methanol–ethanol mixtures were studied by optical absorption spectroscopy and transmission electron microscopy at pressures of up to 23 and 30 GPa, respectively. Solvent solidification and associated nonhydrostatic stresses were found to have a negligible effect on the shape and size of AuNSs. On the contrary, while AuNRs maintained their initial morphology in the hydrostatic range, the uniaxial stress component induced under nonhydrostatic conditions had a shearing effect on the AuNRs, breaking them into smaller particles. Interestingly, colloidal stability was maintained in all cases, and the particles showed no sign of aggregation, despite the severe nonhydrostatic conditions to which both AuNR and AuNS colloids were subjected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.