This study aimed to determine whether manipulation of the microRNA-200 (miR-200) family could influence colon adenocarcinoma cell behavior. The miR-200 family has a significant role in tumor suppression and functions as an oncogene. In vitro studies on gain and loss of function with small interfering RNA demonstrated that the miR-200 family could regulate RASSF2 expression. Knockdown of the miR-200 family in the HT-29 colon cancer cell line increased KRAS expression but decreased signaling in the MAPK/ERK signaling pathway through reduced ERK phosphorylation. Increased expression of the miR-200 family in the CCD-841 colon epithelium cell line increased KRAS expression and led to increased signaling in the MAPK/ERK signaling pathway but increased ERK phosphorylation. Functionally, knockdown of the miR-200 family led to decreased cell proliferation in the HT-29 cells; therefore, increased miR-200 family expression could increase cell proliferation in the CCD-841 cell line. The present study included a large paired miR array dataset (n=632), in which the miR-200 family was significantly found to be increased in colon cancer when compared with normal adjacent colon epithelium. In a miR-seq dataset (n=199), the study found that miR-200 family expression was increased in localized colon cancer compared with metastatic disease. Decreased expression was associated with poorer overall survival. The miR-200 family directly targeted RASSF2 and was inversely correlated with RASSF2 expression (n=199, all P<0.001). Despite the well-defined role of the miR-200 family in tumor suppression, the present findings demonstrated a novel function of the miR-200 family in tumor proliferation.
Background: Colorectal cancer (CRC) is a leading cause of cancer-related death. Epithelial-mesenchymal transition (EMT) is a major process in tumor metastasis development. This systematic review aims to describe the role of long non-coding RNA (lncRNA) in EMT in CRC. Methods: The electronic databases, PubMed, Cochrane, and EMBASE, were searched from January1990 to June 2019 to identify studies examining lncRNA and their role in mediating EMT in CRC. Studies examining clinical specimens and/or in vitro experiments were included. Results: In 61 identified studies, 54 lncRNAs were increased in CRC compared to normal colorectal epithelium. Increased lncRNA expression was frequently associated with worse survival. Many lncRNAs mediate their effect through competitive endogenous RNA or transcription factor regulation. The ZEB1, 2/ E-cadherin, Wnt/β-catenin signaling, and chromatin remodeling pathways are discussed in particular. Conclusions: lncRNAs are major regulators of EMT and predictor adverse outcome in CRC patients. Future research must focus on delineating lncRNA function prior to potential clinical use.
Excessive inflammatory responses in the surgical patient may result in cellular hypo-responsiveness, which is associated with an increased risk of secondary infection and death. microRNAs (miRNAs), such as miR-155, are powerful regulators of inflammatory signalling pathways including nuclear factor κB (NFκB). Our objective was to determine the effect of IκK-16, a selective blocker of inhibitor of kappa-B kinase (IκK), on miRNA expression and the monocyte inflammatory response. In a model of endotoxin tolerance using primary human monocytes, impaired monocytes had decreased p65 expression with suppressed TNF-α and IL-10 production (P < 0.05). miR-155 and miR-138 levels were significantly upregulated at 17 h in the impaired monocyte (P < 0.05). Notably, IκK-16 decreased miR-155 expression with a corresponding dose-dependent decrease in TNF-α and IL-10 production (P < 0.05), and impaired monocyte function was associated with increased miR-155 and miR-138 expression. In the context of IκK-16 inhibition, miR-155 mimics increased TNF-α production, while miR-155 antagomirs decreased both TNF-α and IL-10 production. These data demonstrate that IκK-16 treatment attenuates the monocyte inflammatory response, which may occur through a miR-155-mediated mechanism, and that IκK-16 is a promising approach to limit the magnitude of an excessive innate inflammatory response to LPS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.