The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.
C. albicans is the predominant human fungal pathogen worldwide and frequently colonises medical devices, such as voice prosthesis, as a biofilm. It is a dimorphic yeast that can switch between yeast and hyphal forms in response to environmental cues, a property that is essential during biofilm establishment and maturation. One such cue is elevation of CO2 levels, as observed in exhaled breath for example. However, despite the clear medical relevance the effects of high CO2 levels on C. albicans biofilm growth has not been investigated to date. Here, we show that 5% CO2 significantly enhances each stage of the C. albicans biofilm forming process; from attachment through maturation to dispersion, via stimulation of the Ras/cAMP/PKA signalling pathway. Transcriptome analysis of biofilm formation under elevated CO2 conditions revealed the activation of key biofilm formation pathways governed by the central biofilm regulators Efg1, Brg1, Bcr1 and Ndt80. Biofilms grown in under elevated CO2 conditions also exhibit increases in azole resistance, tolerance to nutritional immunity and enhanced glucose uptake capabilities. We thus characterise the mechanisms by which elevated CO2 promote C. albicans biofilm formation. We also investigate the possibility of re-purposing drugs that can target the CO2 activated metabolic enhancements observed in C. albicans biofilms. Using this approach we can significantly reduce multi-species biofilm formation in a high CO2 environment and demonstrate a significant extension of the lifespan of voice prostheses in a patient trial. Our research demonstrates a bench to bedside approach to tackle Candida albicans biofilm formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.