Bolaamphiphiles (BAs) are structurally segmented molecules with rich assembly characteristics and diverse physical properties. Interest in BAs as standalone active agents or as constituents of more complex therapeutic formulations has increased substantially in recent years. The preorganized amphiphilicity of BAs allows for a range of biological activities including applications that rely on multivalency. This review summarizes BA-related research in biomedically relevant areas. In particular, we review BA-related literature in four areas: gene delivery, antimicrobial materials, hydrogels, and prodrugs. We also discuss several distinguishing characteristics of BAs that impact their utility as biomedically relevant compounds.
Building on previous work (J. Phys. Chem. A2017,121, 8154–8166) under neutral conditions, we examined the co-oligomerization of CH2O and pyrrole to form porphryinogen under acidic conditions using density functional theory (B3LYP//6-311G**). Thermodynamically, we found that azafulvene intermediates were significantly stabilized under highly acidic conditions. Kinetically, energy barriers were lowered for C–C bond formation, discriminating in favor of reactions that lead to porphyrinogen. However, it was challenging to satisfactorily combine our thermodynamic and kinetic profiles into a unified free-energy profile because of difficulties in optimizing transition states of cationic species involving proton hops. Instead, we used neutral carboxylic acids as a proxy to study how energy barriers changed. By combining data from both neutral and acidic conditions, we estimate a free-energy profile for the initial steps of oligomerization under milder acidic conditions more relevant to prebiotic chemistry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.