For the last three decades, composites have become very preferable materials to be used in the automotive industry, structural parts of aircraft and military systems and spacecraft, due to their high strength and modulus. Composite materials are sometimes exposed to invisible or visible damage due to impact loading during their service life. In this study, the effect of impactor geometry with four different contact surfaces on woven carbon fibre-reinforced composite plates having three different thicknesses are investigated. In the first stage, composite plates were manufactured with the ply orientations of [45/-45/0/90/45/-45]2s, [45/-45/0/90/45/-45]3s, [45/-45/0/90/45/-45]4s based on conventional usage. In the second stage, carbon fibre-reinforced composite test panels were exposed to low velocity impact tests to obtain force-time, energy-time and force-displacement curves. Finally, semi and full penetration of composite panels and damage magnitude were determined. It was found that the impactor geometries with lower contact surfaces such as conical and ogive types were much more penetrative on composite plates than the other geometries, but they caused larger damage area in the vicinity of the impact point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.