This study aimed to understand the exact function and potential mechanism of miR-4500 in colorectal cancer (CRC). In this study, the expression of miR-4500 was decreased in both CRC cells and tissues, and downregulated miR-4500 indicated advanced tumor stage and poor survival. By bisulfite sequencing analysis, we found that the CpG island in the promoter region of miR-4500 was hypermethylated in CRC cells and tissues compared with normal control cells and non-tumor tissues, respectively. Functionally, gain-and loss-of-function analyses indicated the tumor suppressor role of miR-4500: it suppressed cell proliferation, cell cycle progression, migration, and invasion. Predictive algorithms and experimental analyses identified HMGA2 as a direct target of miR-4500. Reintroducing HMGA2 impaired the inhibitory effects of miR-4500 on cell growth and motility. Clinically, higher HMGA2 protein expression in CRC tissues was associated with advanced tumor stage and poor survival. An inverse correlation was found between miR-4500 levels and HMGA2 protein expression. Taken together, this study provides the first evidence that miR-4500 functions as a novel tumor suppressor in the miR-4500/HMGA2 axis in colorectal carcinogenesis, and restoring miR-4500 expression might represent a promising therapeutic strategy for CRC.Abbreviations: CRC, Colorectal cancer; HMGA2, high mobility group AT-hook 2; 5-aza, 5-aza-2 0 -deoxycytidine
Ginsenoside Rh2 (GRh2) has been reported to have therapeutic effects on various diseases. However, whether it may also affect the recovery from ulcerative colitis remains unknown. Here we induced colitis in mice by dextran sulfate sodium (DSS) administration, and then treated the mice with GRh2. We found that GRh2-treated mice showed significant alleviation of the DSS-induced colitis. Moreover, significant increase in the activity of TGFβ signaling was detected in the GRh2-treated colon that had received DSS. To investigate whether there is a causative link among GRh2 treatment, TGFβ signaling augment and the cure of colitis, we gave the DSS-treated mice a combination of GRh2 and a specific TGFβ receptor I inhibitor, SB431542. SB431542 significantly decreased the activation of TGFβ signaling in the colon from the GRh2-administrated mice, and consequently attenuated the therapeutic effect of GRh2. Our data thus demonstrate that GRh2 may alleviate DSS-induced colitis via augmenting TGFβ signaling.
BackgroundColorectal cancer (CRC) is one of the most common cancer and the leading causes of cancer mortality worldwide. The critical role of hypoxia-inducible factor 1α (HIF-1α) and vascular endothelial growth factor (VEGF) are important in the cancer development.MethodsThe purpose of this study was to investigate the association of miR-199a expression in CRC and non-tumor tissues as well as assessed the effect of miR-199a on biological behaviors including cell proliferation, apoptosis, migration and invasion of CRC cells. The expression of miR-199a was distinctly decreased in colorectal cancer tissues compared with non-neoplastic colorectal tissues.ResultsIn this study, we found that miR-199a down-regulation was associated with the CRC and metastasis incidence. Advanced study showed that miR-199a up-regulation would lead to decreased CRC proliferation, migration and invasion. However, no significant association of miR-199a treatment and apoptosis rate and cell-cycle were detected in this study. The detection for the mechanisms of miR-199a on the development of CRC showed that the anticarcinogenic effect of miR-199a might be produced through HIF-1α/VEGF pathway.ConclusionIt was found that miR-199a would reduce the proliferation, migration and invasion. However, overexpression of miR-199a on the apoptosis rate and cell cycles showed no significant results. The potential functionary mechanism of miR-199a might through HIF-1α/VEGF pathway.Virtual slidesThe virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/9806714131513041.
BackgroundThe effect of chronic psychological stress on hepatitis and liver fibrosis is concerned. However, its mechanism remains unclear. We investigated the effect and mechanism of chronic psychological stress in promoting liver injury and fibrosis through gut.MethodsSixty male SD rats were randomly assigned to 6 groups. Rat models of chronic psychological stress (4 weeks) and liver fibrosis (8 weeks) were established. The diversity of gut microbiota in intestinal feces, permeability of intestinal mucosa, pathologies of intestinal and liver tissues, collagen fibers, protein expressions of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear factor kappa β (NF-κβ), tumor necrosis factor α (TNF-α) and interleukin 1 (IL-1) in liver tissue, liver function and coagulation function in blood and lipopolysaccharide (LPS) in portal vein blood were detected and analyzed.ResultsThe diversities and abundances of gut microbiota were significant differences in rats among each group. The pathological lesions of intestinal and liver tissues, decreased expression of occludin protein in intestinal mucosa, deposition of collagen fibers and increased protein expression of TLR4, MyD88, NF-κβ, TNF-α and IL-1 in liver tissue, increased LPS level in portal vein blood, and abnormalities of liver function and coagulation function, were observed in rats exposed to chronic psychological stress or liver fibrosis. There were significant differences with normal rats. When the dual intervention factors of chronic psychological stress and liver fibrosis were superimposed, the above indicators were further aggravated.ConclusionChronic psychological stress promotes liver injury and fibrosis, depending on changes in the diversity of gut microbiota and increased intestinal permeability caused by psychological stress, LPS that enters liver and acts on TLR4, and active LPS-TLR4 pathway depend on MyD88. It demonstrates the possibility of existence of brain-gut-liver axis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.