By fusing the extracellular domain of the natural killer (NK) cell receptor NKG2D to DAP12, we constructed a chimeric antigen receptor (CAR) to improve NK cell tumor responses. An RNA electroporation approach that provides transient expression of the CAR was adopted as a risk mitigation strategy. Expression of the NKG2D RNA CAR significantly augmented the cytolytic activity of NK cells against several solid tumor cell lines in vitro and provided a clear therapeutic benefit to mice with established solid tumors. Three patients with metastatic colorectal cancer were then treated with local infusion of the CAR-NK cells. Reduction of ascites generation and a marked decrease in number of tumor cells in ascites samples were observed in the first two patients treated with intraperitoneal infusion of low doses of the CAR-NK cells. The third patient with metastatic tumor sites in the liver was treated with ultrasound-guided percutaneous injection, followed by intraperitoneal infusion of the CAR-NK cells. Rapid tumor regression in the liver region was observed with Doppler ultrasound imaging and complete metabolic response in the treated liver lesions was confirmed by positron emission tomography (PET)-computed tomographic (CT) scanning. Our results highlight a promising therapeutic potential of using RNA CAR-modified NK cells to treat metastatic colorectal cancer.
Background/Aims: Stem cell-derived exosomes (EXs) offer protective effects on various cells via their carried microRNAs (miRs). Meanwhile, miR-210 has been shown to reduce mitochondrial reactive oxygen species (ROS) overproduction. In this study, we determined the potential effects of endothelial progenitor cell-derived EXs (EPC-EXs) on hypoxia/ reoxygenation (H/R) injured endothelial cells (ECs) and investigated whether these effects could be boosted by miR-210 loading. Methods: Human EPCs were used to generate EPCEXs, or transfected with scrambler control or miR-210 mimics to generate EPC-EXs sc and EPCEXs miR-210 . H/R-injured human ECs were used as a model for functional analysis of EXs on apoptosis, viability, ROS production and angiogenic ability (migration and tube formation) by flow cytometry, MTT, dihydroethidium and angiogenesis assay kits, respectively. For mechanism analysis, the mitochondrion morphology, membrane potential (MMP), ATP level and the expression of fission/fusion proteins (dynamin-related protein 1: drp1 and mitofusin-2: mfn2) were assessed by using JC-1 staining, ELISA and western blot, respectively. Results: 1) Transfection of miR-210 mimics into EPCs induced increase of miR-210 in EPC-EXs
BackgroundPyroptosis and oxidative stress play pivotal roles in cardiomyocyte loss after myocardial infarction. NF-κB is associated with oxidative stress and gasdermin D (GSDMD), the effector molecule of pyroptosis. However, the exact relationship between oxidative stress and cardiomyocyte pyroptosis remains unknown.Material/MethodsWe measured inflammasome-mediated cardiomyocyte pyroptosis in vivo via membrane pore formation, lactate dehydrogenase (LDH) release, and expression of caspase-1, cleaved caspase-1, NACHT, LRR and PYD domains-containing protein 3 (NLRP3), and apoptosis-associated speck-like protein containing a CARD (ASC). Furthermore, we induced pyroptosis in vitro by oxygen-glucose deprivation (OGD) in H9C2 cells. NLRP3 inflammasome-mediated pyroptosis was confirmed by LDH assay kit and Western blot. Oxidative stress was evaluated by reactive oxygen species (ROS) and superoxide dismutase (SOD) activity. We suppressed oxidative stress with N-acetyl-cysteine (NAC) and measured subsequent changes to the NF-κB-GSDMD axis and pyroptosis by LDH assay kit and Western blot. Then, we inhibited NF-κB activation with pyrrolidine dithiocarbamate (PDTC) and measured changes to GSDMD activity and pyroptosis by qRT-PCR, Western blot, and LDH assay kit.ResultsSuppression of oxidative stress by NAC reduced NF-κB and GSDMD activation and increased pyroptosis, characterized by LDH release and NLRP3 inflammasome activation in H9C2 cells under OGD. Moreover, inhibition of NF-κB activation reduced GSDMD transcription and activation and NLRP3 inflammasome-mediated pyroptosis of H9C2 cells under OGD.ConclusionsWe demonstrated that the NF-κB-GSDMD axis functioned as a bridge between oxidative stress and NLRP3 inflammasome-mediated cardiomyocyte pyroptosis. Our findings provide important insight into the mechanism of myocardial infarction-related ventricular remodeling.
Oxidative stress is one of the mechanisms of ageing‐associated vascular dysfunction. Angiotensin‐converting enzyme 2 (ACE2) and microRNA (miR)‐18a have shown to be down‐regulated in ageing cells. Our previous study has shown that ACE2‐primed endothelial progenitor cells (ACE2‐EPCs) have protective effects on endothelial cells (ECs), which might be due to their released exosomes (EXs). Here, we aimed to investigate whether ACE2‐EPC‐EXs could attenuate hypoxia/reoxygenation (H/R)‐induced injury in ageing ECs through their carried miR‐18a. Young and angiotensin II‐induced ageing ECs were subjected to H/R and co‐cultured with vehicle (medium), EPC‐EXs, ACE2‐EPCs‐EXs, ACE2‐EPCs‐EXs + DX600 or ACE2‐EPCs‐EXs with miR‐18a deficiency (ACE2‐EPCs‐EXsanti‐miR‐18a). Results showed (1) ageing ECs displayed increased senescence, apoptosis and ROS production, but decreased ACE2 and miR‐18a expressions and tube formation ability; (2) under H/R condition, ageing ECs showed higher rate of apoptosis, ROS overproduction and nitric oxide reduction, up‐regulation of Nox2, down‐regulation of ACE2, miR‐18a and eNOS, and compromised tube formation ability; (3) compared with EPC‐EXs, ACE2‐EPC‐EXs had better efficiencies on protecting ECs from H/R‐induced changes; (4) The protective effects were less seen in ACE2‐EPCs‐EXs + DX600 and ACE2‐EPCs‐EXsanti‐miR‐18a groups. These data suggest that ACE‐EPCs‐EXs have better protective effects on H/R injury in ageing ECs which could be through their carried miR‐18a and subsequently down‐regulating the Nox2/ROS pathway.
BackgroundLarge body of evidences accumulated in clinical and epidemiological studies indicate that hearts of diabetic subjects are more sensitive to ischemia reperfusion injury (IRI), which results in a higher rate of mortality at post-operation than that of non-diabetes. However, experimental results are equivocal and point to either increased or decreased susceptibility of the diabetic hearts to IRI, especially at the early stage of the disease. The present study was designed to test the hypothesis that the duration/severity of the indexed ischemia is a major determinant of the vulnerability to myocardial IRI at early stage of diabetes.MethodsFour weeks streptozotocin (STZ)-induced diabetic (D) and non-diabetic (C) Sprague–Dawley rats were randomly assigned to receive 30 or 45 min of left anterior descending artery ligation followed by 2 or 3 hours of reperfusion, respectively. Cardiac function was recorded by using Pressure-Volume (PV) conduction system. Myocardial infarct size was determined with triphenyltetrazolium chloride staining. Plasma Creatine kinase-MB (CK-MB), Lactate dehydrogenase (LDH) release, myocardial nitric oxide(NO) content and nitrotyrosine formation, 15-F2t-Isoprostane and plasma superoxide dismutase (SOD) were measured with colorimetric assays. Cardiomyocyte apoptosis was assessed by TUNEL staining. Myocardial TNFα, Caspase-3, STAT3, Akt, and GSK-3β were determined by Western blotting.ResultsProlongation of ischemia but not reperfusion from 30 min to 45 min significantly increased infarct size in D compared to C rats (P < 0.05), accompanied with significantly increased plasma CK-MB (P < 0.05). Prolongation of the duration of either ischemia or reperfusion significantly increased plasma LDH release and myocardial 15-F2t-Isoprostane and reduced plasma SOD activity, with concomitant reduction of myocardial NO and increase of nitrotyrosine formation in D relative to C (P < 0.05). Prolongation of ischemia and reperfusion significantly reduced left ventricular ejection fraction and increased the peak rate of pressure, accompanied with increased end systolic pressure in D relative to C rats (P < 0.05) but reduced phosphorylations of myocardial STAT3 at site Ser727 and Akt at site Ser473 as well as GSK-3β at Ser 9 (P < 0.05).ConclusionsDiabetic hearts, even at early stage of the disease are more sensitive to IRI, and this increased severity of post-ischemic myocardial injury depends more on the duration of ischemia than that of reperfusion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.