The continued threat of emerging, highly lethal infectious pathogens such as Middle East respiratory syndrome coronavirus (MERS-CoV) calls for the development of novel vaccine technology that offers safe and effective prophylactic measures. Here, a novel nanoparticle vaccine is developed to deliver subunit viral antigens and STING agonists in a virus-like fashion. STING agonists are first encapsulated into capsid-like hollow polymeric nanoparticles, which show multiple favorable attributes, including a pH-responsive release profile, prominent local immune activation, and reduced systemic reactogenicity.
Upon subsequent antigen conjugation, the nanoparticles carry morphological semblance to native virions and facilitate codelivery of antigens and STING agonists to draining lymph nodes and immune cells for immune potentiation. Nanoparticle vaccine effectiveness is supported by the elicitation of potent neutralization antibody and antigen-specific T cell responses in mice immunized with a MERS-CoV nanoparticle vaccine candidate. Using a MERS-CoVpermissive transgenic mouse model, it is shown that mice immunized with this nanoparticle-based MERS-CoV vaccine are protected against a lethal challenge of MERS-CoV without triggering undesirable eosinophilic immunopathology. Together, the biocompatible hollow nanoparticle described herein provides an excellent strategy for delivering both subunit vaccine candidates and novel adjuvants, enabling accelerated development of effective and safe vaccines against emerging viral pathogens.
We undertake a comprehensive review of more than 120 social science studies on nanotechnology, 90% of which are based on the analyses of the nanotechnology publications and patents. We discussed four intellectual debates formed by these studies, namely whether nanotechnology is an interdisciplinary field, whether nanoscience and nanotechnology are closely interlinked, whether nanotechnology development is path dependent and who is winning the global nanorace. We also conduct a comparative analysis of bibliometric search strategies used in the literature to harvest the publications and patents, including lexical queries, evolutionary lexical queries, citation analysis, and the use of core journal sets to identify nanotechnology articles. Because most of the compared strategies, except the one using 10 core journals in the field, share a core set of keywords and thus harvest a common batch of publications, they produce very similar ranking tables of the top subject areas and journals and the most prolific countries and institutions. Moreover, the core journal strategy does not provide a robust delineation of an emerging field such as nanotechnology due to the fact that nanotechnology related articles are published in a wide range of journals. Also, the different criteria for selecting the core journals will affect the analytical results dramatically.
The ongoing battle against current and rising viral infectious threats has prompted increasing effort in the development of vaccine technology. A major thrust in vaccine research focuses on developing formulations with virus-like features towards enhancing antigen presentation and immune processing. Herein, a facile approach to formulate synthetic virus-like particles (sVLPs) is demonstrated by exploiting the phenomenon of protein corona formation induced by the high-energy surfaces of synthetic nanoparticles. Using an avian coronavirus spike protein as a model antigen, sVLPs were prepared by incubating 100 nm gold nanoparticles in a solution containing an optimized concentration of viral proteins. Following removal of free proteins, antigen-laden particles were recovered and showed morphological semblance to natural viral particles under nanoparticle tracking analysis and transmission electron microscopy. As compared to inoculation with free proteins, vaccination with the sVLPs showed enhanced lymphatic antigen delivery, stronger antibody titers, increased splenic T-cell response, and reduced infection-associated symptoms in an avian model of coronavirus infection. Comparison to a commercial whole inactivated virus vaccine also showed evidence of superior antiviral protection by the sVLPs. The study demonstrates a simple yet robust method in bridging viral antigens with synthetic nanoparticles for improved vaccine application; it has practical implications in the management of human viral infections as well as in animal agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.