We aim to investigate the role of Golgi phosphoprotein 3 (GOLPH3) and the possible regulation mechanism underlying lung adenocarcinoma (LADC). Methods: The level of GOLPH3 was performed by quantitative real time (qRT)-PCR, Western blot and immunohistochemistry. Patient survival rate was analyzed by Kaplan-Meier method. MTT was used to detect cell viability. The levels of p-serine/threonine-protein kinase (Akt), Akt, p-p65, p65 and β-catenin were determined by Western blot. Cell apoptosis was tested using flow cytometry. Angiogenesis was determined by in vitro angiogenesis assay. qPCR and Western blot were performed to identify apoptotic protein B-cell lymphoma 2 (Bcl-2)/Bcl-2-associated X protein (Bax) and vascular endothelial growth factor (VEGF). Results: GOLPH3 was highly expressed in LADC cell lines and tissues and was significantly correlated with poor overall survival among patients with LADC. Furthermore, GOLPH3 expression was reduced in A549 and H23 cells in a cisplatin-dependent manner. Silencing of GOLPH3 enhanced inhibition of A549 and H23 cells by cisplatin and suppressed the protein expression of p-Akt, while p-p65 expression remained stable. However, overexpression of GOLPH3 weakened the inhibition of A549 and H23 cells by cisplatin and improved the protein expression of p-Akt, while p-p65 expression remained stable. XAV939, an inhibitor of Wnt/β-catenin signaling pathway, decreased GOLPH3 overexpression-induced proliferation and enhanced cisplatin-induced angiogenesis inhibition and apoptosis, which was supported by the changes of VEGF, Bax and Bcl-2. Conclusion: GOLPH3 promotes proliferation capacity in LADC through activating the Wnt/β-catenin signaling pathway.
Background. Complex carcinogenic mechanisms and the existence of tumour heterogeneity in multiple myeloma (MM) prevent the most commonly used staging system from effectively interpreting the prognosis of patients. Since the microenvironment plays an important role in driving tumour development and MM occurs most often in middle-aged and elderly patients, we hypothesize that ageing of bone marrow mesenchymal stem cells (BM-MSCs) may be associated with the progression of MM. Methods. In this study, we collected the transcriptome data on MM from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) databases. Differentially expressed genes in both senescent MSCs and MM tumour cells were considered relevant damaged genes. GO and KEGG analyses were applied for functional evaluation. A PPI network was constructed to identify hub genes. Subsequently, we studied the damaged genes that affected the prognosis of MM. Least absolute shrinkage and selection operator (lasso) regression was used to identify the most important features, and a risk model was created. The reliability of the risk model was evaluated with the other 3 GEO validation cohorts. In addition, ROC analysis was used to evaluate the novel risk model. An analysis of immune checkpoint-related genes, tumour immune dysfunction and exclusion (TIDE), and immunophenotypic scoring (IPS) were performed to assess the immune status of risk groups. pRRophetic was utilized to predict the sensitivity to administration of chemotherapeutic agents. Results. We identified that MAPK, PI3K, and p53 signalling pathways were activated in both senescent MSCs and tumour cells, and we also located hub genes. In addition, we constructed a 14-gene prognostic risk model, which was analysed with the ROC and validated in different datasets. Further analysis revealed significant differences in predicted risk values across the International Staging System (ISS) stage, sex, and 1q21 copy number. A high-risk group with higher immunogenicity was predicted to have low proteasome inhibitor sensitivity and respond poorly to immunotherapy. Lipid metabolism pathways were found to be significantly different between high-risk and low-risk groups. A nomogram was created by combining clinical data, and the optimization model was further improved. Finally, real-time qPCR was used to validate two bortezomib-resistant myeloma cell lines, and the test confirmed that 10 genes were detected to be expressed in resistant cell lines with the same trend as in the high-risk cohort compared to nonresistant cells. Conclusion. Fourteen genes related to ageing in BM-MSCs were associated with the prognosis of MM, and by combining this genotypic information with clinical factors, a promising clinical prognostic model was established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.