With the advent of e-learning, there is a strong demand for tools that help to create e-learning courses in an automatic or semi-automatic way. While resources for new courses are often freely available, they are generally not properly structured into easy to handle units. In this paper, we investigate how state of the art text segmentation algorithms can be applied to automatically transform unstructured text into coherent pieces appropriate for e-learning courses. The feasibility to course generation is validated on a test corpus specifically tailored to this scenario. We also introduce a more generic training and testing method for text segmentation algorithms based on a Latent Dirichlet Allocation (LDA) topic model. In addition we introduce a scalable random text segmentation algorithm, in order to establish lower and upper bounds to be able to evaluate segmentation results on a common basis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.