Filtration of cathode air is one of the challenges in operating proton-exchange membrane (PEM) fuel cells. The poisoning with air contaminants can lead to rapid performance degradation and initiate an aging process of the fuel cell. Various commercially available cathode filters are being tested in a laboratory gas test bench within the research project X-EMU (03B10502B and 03B10502B2). A literature review of harmful gas contaminants in the air used for the oxygen reduction reaction (ORR) on the cathode side was conducted. Experimental investigations took place at 40 °C with synthetic humid air containing low concentration contaminants such as ammonia, nitrogen dioxide, carbon monoxide, sulfur dioxide, hydrogen sulfide, and toluene. Test durations varied from 3 to 24 h depending on the filtration efficiency. Each gas contaminant showed different reactions with the investigated filters. The filters did not let sulfur-containing components pass. However, carbon monoxide could not be filtrated by any of the tested filters. The filtration of nitrogen oxides was not efficient for all tested filters, while additional filter materials were essential for a successful filtration of ammonia. Comparative results lead to a discussion of possible effects on a fuel cell with an outlook on optimization of the filtration behavior.
In addition to SCR systems, lean NOX traps (LNTs) are also used for exhaust aftertreatment of lean burn internal combustion engines to sustainably reduce NOX emissions. Modern LNTs consist of different functional compounds to maximize the performance during NOX storage and regeneration. Based on the material analysis of a serial production LNT, PGM loaded BaO, Al2O3, MgAl2O4, and CeO2 were identified as the main base materials. In this paper, the NOX storage capacity (NSC) of these compounds is investigated both as single catalysts and as physical mixtures to identify possible synergistic effects. Therefore, commercially available support materials were loaded with Platinum and tested in granular form under realistic conditions. To optimize the performance by reducing the diffusion pathways for NOX molecules during storage, PGM, BaO, and Ceria were combined in a composite by the incipient wetness impregnation of alumina. As a result, the temperature dependent NSC of the commercial LNT could be reached with the Pt/Rh/Ba10Ce25/Al2O3 infiltration composite, while reducing the oxygen storage capacity by about 45%. Without the additional Rhodium coating, the low-temperature NSC was insufficient, highlighting the important contribution of this precious metal to the overall performance of LNTs.
This study investigates for the first time the influence of the NO2 / NOx ratio on formaldehyde-related effects under close to real conditions using a copper exchanged chabazite type zeolite...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.