Microsporum canis (M. canis) is a common pathogen that causes tinea capitis and is present worldwide. The incidence of M. canis infection, particularly tinea capitis, has been increasing in china. In our previous studies, family of serine hydrolases 1 (FSH1) was identified as a potential virulence factor in tinea capitis infection caused by M. canis. To determine the function of this gene in M. canis, FSH1 was knocked down using double-stranded RNA interference mediated by Agrobacterium tumefaciens. Reverse transcription-quantitative PCR analysis was used to confirm gene knockdown. Loss of FSH1 expression by RNAi resulted in a minor phenotype alteration, but M. canis pathogenicity in guinea pig cutaneous infection was decreased compared with the wild-type strain. To the best of our knowledge, the present study is the first to demonstrate that FSH1 is associated with macroconidia septa formation and is an important contributor to M. canis virulence. These findings may advance the understanding of the function of the FSH1 gene and provide a foundation for future studies on macroconidia septa formation and pathogenicity of M. canis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.