As a type of natural fiber with excellent elongation, coir fiber has been applied in a wide range of fields. To ensure superb performance, coir fiber is usually treated with alkali before being applied. Previous studies paid little attention to the multiple alkali treatment of coir fiber; however, this study focuses on its influence on the mechanical properties of coir fiber and conducts multi-objective optimization and analysis of the tensile strength, elastic modulus and elongation of coir fiber. Our objective is the comprehensive enhancement of the mechanical properties of coir fiber. In this study, the experimental design is based on the Box-Behnken design method, and three treatment parameters were selected for the study, namely NaOH concentration, treatment time and treatment temperature. Analysis of variance (ANOVA) was adopted to analyze the experimental data, and response surface methodology (RSM) was used to investigate how the treatment factors interact with each other and affect the responses values. To improve the tensile strength, elastic modulus and elongation of coir fiber simultaneously, the experimental parameters were optimized. The results showed that the optimal values of NaOH concentration, treatment time and treatment temperature were 4.12%, 15.08 h and 34.21 °C, respectively. Under these conditions, the tensile strength of coir fiber was 97.14 MPa, the elastic modulus was 2.98 GPa and the elongation was 29.35%, which were 38.28%, 39.91% and 25.59% higher than that of untreated coir fiber, respectively. Furthermore, scanning electron microscopy (SEM), thermogravimetric analysis (TGA-DTG), Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) were used to analyze the changes in surface, weight loss, composition and crystallinity of coir fiber treated with alkali under optimum conditions compared with untreated coir fiber to obtain a deeper insight into the influential mechanisms of alkali treatment.
Coir-fiber-reinforced epoxy resin composites are an environmentally friendly material, and the use of coir fibers improves the mechanical properties of epoxy resin. In order to improve the interfacial adhesion between coir fibers and the epoxy resin matrix, microwave treatment, alkali treatment, acetic anhydride modification, 3-aminopropyltriethoxysilane modification and their reasonable combination method treatments were carried out on coir fibers, respectively. Scanning electron microscopy (SEM), Fourier transform-infrared (FTIR) and X-ray diffraction (XRD) were used to analyze the effects of the different treatments on the characteristics of the coir fibers, and single-fiber pullout tests were performed on the pullout specimens made from the above coir fibers. The results calculated by the proposed estimation method show that the combination method of alkali treatment and 3-aminopropyltriethoxysilane surface modification could better enhance the interfacial bonding ability between coir fibers and epoxy resin with an interfacial shear strength and pullout energy of 6.728 MPa and 40.237 N·mm, respectively. The principal analysis shows that the method can form both mechanical interlocking and chemical bonds at the interface to enhance the interfacial bonding ability. This study provides a more suitable method for improving the interfacial properties of coir-fiber-reinforced epoxy resin composites and has implications for the study of natural fiber composites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.