This study shows that HFCS consumption in adolescent rats led to a bipolar-like behavioural phenotype with neuronal hyperexcitability, which is known to be one of the earliest endophenotypic manifestations of bipolar disorder. Inhibition of GSK-3B with TDZD-8 attenuated hyperexcitability and restored HFCS-induced behavioural alterations.
We demonstrate the synthesis of GaN nanocrystals (NCs) with the sizes of less than the doubled exciton Bohr radius leading quantum confinement effects via a single-step technique. The generation of colloidal GaN nanoparticles (NPs) in organic solution through nanosecond (ns) and femtosecond (fs) pulsed laser ablation (PLA) of GaN powder was carried out. Ns PLA in ethanol and polymer matrix resulted in amorphous GaN-NPs with the size distribution of 12.4 ± 7.0 and 6.4 ± 2.3 nm, respectively, whereas fs PLA in ethanol produced colloidal GaN-NCs with spherical shape within 4.2 ± 1.9 nm particle size distribution. XRD and selected area electron diffraction analysis of the product via fs PLA revealed that GaN-NCs are in wurtzite structure. Moreover, X-ray photoelectron spectroscopy measurements also confirm the presence of GaN nanomaterials. The colloidal GaN-NCs solution exhibits strong blue shift in the absorption spectrum compared to that of the GaN-NPs via ns PLA in ethanol. Furthermore, the photoluminescence emission behavior of fs PLA-generated GaN-NCs in the 295-400 nm wavelength range is observed with a peak position located at 305 nm showing a strong blue shift with respect to the bulk GaN.
The present study investigates and models the effect of laser ablated silver nanoparticles (AgNPs) on the development of the aquatic macrophyte Lemna minor. Toxic effects of five different AgNP concentrations (8, 16, 32, 96 and 128 μg L(-1)) on L. minor were recorded over seven days under simulated natural conditions. Biosorption of AgNPs by L. minor was modeled using four sorption isotherms, and the sorption behavior was found to agree most closely with the Langmuir-Freundlich model (R(2)=0.997). While toxic effects of AgNPs could be observed in all models and concentrations, the greatest increase in toxicity was in the 8-32 μg L(-1) range. Dry weight- and frond number-based inhibition experiments suggest that growth inhibition does not necessarily scale with AgNP concentration, and that slight fluctuations in inhibition rates exist over certain concentration ranges. Very close fits (R(2)=0.999) were obtained for all removal models, suggesting that the fluctuations are not caused by experimental variation. In addition, L. minor was found to be a successful bioremediation agent for AgNPs, and displayed higher removal rates for increasing AgNP doses. FT-IR spectroscopy suggests that carbonyl groups are involved in AgNP remediation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.