Smoking has the strongest impact on CYP1A2 activity, while gender and haplotype H4 showed marginal effects. The influence of the -163C>A polymorphism on CYP1A2 activity in smokers suggests an effect on the inducibility of the enzyme.
The effect of ionizing irradiation on testes and the protective effects of melatonin were investigated by immunohistochemical and electron microscopic methods. Eighty-two adult male Wistar rats were divided into 10 groups. The rats in the irradiated groups were exposed to a sublethal irradiation dose of 8 Gy, either to the total body or abdominopelvic region using a 60 Co source at a focus of 80 cm away from the skin in the morning or evening together with vehicle (20% ethanol) or melatonin administered 24 h before (10 mg/kg), immediately before (20 mg/kg) and 24 h after irradiation (10 mg/kg), all ip. Caspace-3 immunoreactivity was increased in the irradiated group compared to control (P < 0.05). Melatonin-treated groups showed less apoptosis as indicated by a considerable decrease in caspace-3 immunoreactivity (P < 0.05). Electron microscopic examination showed that all spermatogenic cells, especially primary spermatocytes, displayed prominent degeneration in the groups submitted to total body and abdominopelvic irradiation. However, melatonin administration considerably inhibited these degenerative changes, especially in rats who received abdominopelvic irradiation. Total body and abdominopelvic irradiation induced identical apoptosis and testicular damage. Chronobiological assessment revealed that biologic rhythm does not alter the inductive effect of irradiation. These data indicate that melatonin protects against total body and abdominopelvic irradiation. Melatonin was more effective in the evening abdominopelvic irradiation and melatonin-treated group than in the total body irradiation and melatonintreated group.
The current study describes the synthesis and biological evaluation of a novel series of 2-amino-3-naphthoylthiophenes, with variable modifications at the 4- and 5-position of the thiophene as well as the naphthoyl ring. Allosteric enhancer activity was measured in several ways: (1) evaluating the effect on forskolin-stimulated cAMP accumulation in the presence of an A(1)-adenosine agonist (CPA) in Chinese hamster ovary (CHO) cells expressing the cloned human A(1)-adenosine receptor (hA(1)AR); (2) ability of these compounds to displace the binding of [(3)H]DPCPX, [(3)H]ZM 241385, and [(3)H]MRE 3008F20 to the ligand binding site of CHO cells expressing the hA(1), hA(2A), and hA(3) adenosine receptors, respectively; (3) effect on the binding of [(3)H]CCPA to membranes from CHO cells expressing hA(1)AR, to rat brain and human cortex membrane preparations containing native adenosine A(1) receptors; (4) kinetics of the dissociation of [(3)H]CCPA from CHO-hA1 membranes. The pharmacological assays compared the various activities to that of the reference compound PD 81,723 (compound 1). Several compounds appeared to be better than PD 81,723 to enhance the effect of CPA (and thus reduce cAMP content) in the CHO:hA(1) assay. The effect of these compounds at a concentration of 10 microM was slightly greater than that of the same concentration of the PD 81,723 and substantially greater than that of PD 81,723 when responses to 1 microM of each compound were compared. These include compounds 23, 25-29, 31-34, 38, 39, 43, and 58. Cycloalkylthiophenes tended to be more potent then their 4,5-dimethyl analogues, and in the series of cycloalkylthiophenes, tetrahydrobenzo[b]thiophene derivatives appeared to be more potent than the dihydrocyclopentadien[b]thiophene counterparts. Some of the most potent compounds were tested at a concentration of 10 microM for their affinity as competitors to the antagonist binding site of CHO cells expressing hA(1), hA(2A), and hA(3) adenosine receptors. None inhibited binding at the hA(2A)AR, but most of them inhibited binding to the hA(1)AR to varying extents (0-19%) as well as to the hA(3)AR to a substantial degree (0-57%). At a concentration of 10 microM, the compounds 31, 34, 37, 38, and 39 were more active than PD 81,723 to increase the binding of [(3)H]CCPA to CHO:hA(1), human brain and rat cortex membranes. Compound 37 was the most active compound increasing the binding to CHO:hA(1), human brain, and rat cortex membranes by 149, 43, and 27%, respectively (51, 15, and 22%, respectively, for PD 81,723). A good correlation was found between the increments [(3)H]CCPA binding to A(1) receptors expressed in different systems. Unlike the effect on agonist binding, the tested compounds did not increase the binding of the antagonist [(3)H]DPCPX on hCHO-A(1) membranes. Ligand dissociation studies revealed that two compounds (22 and 39) were more potent than 1 to slow the dissociation of [(3)H]CCPA from CHO:hA(1)AR membranes. No clear-cut structure-activity relationship can be observed based on data fro...
We investigated the day-night differences in intestinal oxidativeinjury and the inflammatory response following total body (TB) or abdominopelvic (AP) irradiation, and the influence of melatonin administration on tissue injury induced by radiation. Rats (male Wistar, weighing 220-280 g) in the irradiated groups were exposed to a dose of 8 Gy to the TB or AP region in the morning (resting period -1 h after light onset) or evening (activity span -13 h after light onset). Vehicle or melatonin was administered immediately before, immediately after and 24 h after irradiation (10, 2.0 and 10 mg/kg, ip, respectively) to the irradiated rats. AP (P < 0.05) and TB (P < 0.05) irradiation applied in the morning caused a significant increase in thiobarbituric acid reactive substance (TBARS) levels. Melatonin treatment in the morning (P < 0.05) or evening (P < 0.05) decreased TBARS levels after TB irradiation. After AP irradiation, melatonin treatment only in the morning caused a significant decrease in TBARS levels (P < 0.05). Although we have confirmed the development of inflammation after radiotherapy by histological findings, neither AP nor TB irradiation caused any marked changes in myeloperoxidase activity in the morning or evening. Our results indicate that oxidative damage is more prominent in rats receiving TB and AP irradiation in the morning and melatonin appears to have beneficial effects on oxidative damage irrespective of the time of administration. Increased neutrophil accumulation indicates that melatonin administration exerts a protective effect on AP irradiation-induced tissue oxidative injury, especially in the morning.
Our results suggested that C3435T polymorphism in the ABCB1 gene may be an indicator of the susceptibility to major depression, without a likely treatment response to citalopram in a Turkish population. These findings should be replicated in studies on larger patient groups with different ethnicities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.