Novel polyelectrolyte multilayer (PEM) coatings for enhanced protein separations in open tubular CEC (OT-CEC) are reported. Use of four cationic polymers (poly-L-lysine, poly-L-ornithine, poly-L-lysine-serine, and poly-L-glutamic acid-lysine), and three anionic molecular micelles, sodium poly(N-undecanoyl-L-leucyl-alaninate) (poly-L-SULA), sodium poly(N-undecanoyl-L-leucyl-valinate) (poly-L-SULV), and sodium poly(undecylenic sulfate) (poly-SUS) were investigated in PEM coatings for protein separations. The simultaneous effects of cationic polymer concentration, number of bilayers, temperature, applied voltage, and pH of the BGE on the separation of four basic proteins (alpha-chymotrypsinogen A, lysozyme, ribonuclease A, and cytochrome c) were analyzed using a Box Behnken experimental design. The influence of NaCl on the run-to-run reproducibility was investigated for PEM coatings containing each cationic polymer. All coatings exhibited excellent reproducibilities with a %RSD of the EOF less than 1% in the presence of NaCl. Optimal conditions were dependent on both the cationic and anionic polymers used in the PEM coatings. Poly-L-glutamic acid-lysine produced the highest resolution and longest migration time. The use of molecular micelles to form PEM coatings resulted in better separations than single cationic coatings. Chiral poly-L-SULA and poly-L-SULV resulted in higher protein resolutions as compared to the achiral, poly-SUS. Furthermore, the use of poly-L-SULV reversed the elution order of lysozyme and cytochrome c when compared to poly-L-SULA and poly-SUS.
In this work, a zwitterionic molecular micelle, poly-ε-sodium-undecanoyl lysinate (poly-ε-SUK), was synthesized and employed as a coating in open tubular capillary electrochromatography (OT-CEC) for protein separation. The zwitterionic poly-ε-SUK containing both carboxylic acid and amine groups can be either protonated or deprotonated depending on the pH of the background electrolyte; therefore, either an overall positively or negatively charged coating can be achieved. This zwitterionic coating allows protein separations in either normal or reverse polarity mode depending on the pH of the background electrolyte. The protein mixtures contained 4 basic proteins (lysozyme, cytochrome c, α-chymotrypsinogen A, and ribonuclease A) and 6 acidic proteins (myoglobin, β-lactoglobulin A, β-lactoglobulin B, α-lactalbumin, and albumin). Protein separations were optimized specifically for acidic (reverse mode) and basic (normal mode) pH values. Varying the polymer thickness by changing the polymer and salt concentration had a great influence on protein resolution, while all peaks were also baseline resolved in both modes using the optimized poly-ε-SUK coating concentration of 0.4%. Proteins in human sera were separated under optimized acidic and basic conditions in order to demonstrate the general utility of this coating. Nanoscale characterizations of the poly-ε-SUK micellar coatings on silicon surfaces were accomplished using atomic force microscopy (AFM), to gain insight into the morphology and thickness of the zwitterionic coating. The thickness of the polymer coating ranged from 0.9-2.9 nm based on local measurements using nanoshaving, an AFM-based method of nanolithography.
Mixed mode separation using a combination of micellar electrokinetic chromatography (MEKC) and polyelectrolyte multilayer (PEM) coatings is herein reported for the separation of achiral and chiral analytes. Many analytes are difficult to separate by MEKC and PEM coatings alone. Therefore, the implementation of a mixed mode separation provides several advantages for overcoming the limitations of these well-established methods. In this study, it was observed that achiral separations using MEKC and PEM coatings individually resulted in partial resolution of 8 very similar aryl ketones when the molecular micelle (sodium poly(N-undecanoyl-l-glycinate) (poly-SUG)) concentration was varied from 0.25% – 1.00% (w/v) and the bilayer number varied from 2 – 4. However, when mixed mode separation was introduced, baseline resolution was achieved for all 8 analytes. In the case of chiral separations, temazepam, aminoglutethimide, benzoin, benzoin methyl ether and coumachlor were separated using the three separation techniques. For chiral separations, the chiral molecular micelle, sodium poly(N-undecanoyl-l-leucylvalinate) (poly-l-SULV), was employed at concentrations of 0.25–1.50% (w/v) for both MEKC and PEM coatings. Overall, the results revealed partial separation with MEKC and PEM coatings individually. However, mixed mode separation enabled baseline separation of each chiral mixture. The separation of achiral and chiral compounds from different compound classes demonstrates the versatility of this mixed mode approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.