Tracheary-element (TE) differentiation in suspension-cultured mesophyll cells of Zinnia elegans L. was completely inhibited by caffeine and theophylline only when these methylxanthines were applied at least 8 h prior to the appearance of secondary cell-wall thickenings. In contrast, the calcium-channel blocker nifedipine completely inhibited TE differentiation when applied only 2-3 h prior to the onset of secondary cell-wall deposition. This indicates the involvement of a methylxanthine-inhibitable event in TE differentiation that is distinguishable from an event dependent on influx of extracellular calcium. The correlation between the time of appearance of chlorotetracycline fluorescence (an indicator of sequestered Ca(2+)) and loss of methylxanthine effectiveness indicates that inhibition by methylxanthines may result from release of Ca(2+) from intracellular stores. Methylxanthines with high potencies against adenosine 3' ∶ 5'-cyclic monophosphate (cAMP) phosphodiesterase and adenosine receptors were less effective inhibitors of TE differentiation, indicating that inhibition of differentiation by methylxanthines is independent of cAMP metabolism. The role of cAMP in transduction of the cytokinin signal, which was proposed previously on the basis of stimulation of TE differentiation by theophylline, was investigated using the non-hydrolyzable analog 8-bromo-cAMP. Although 8-bromo-cAMP stimulated differentiation in the absence of inductive concentrations of cytokinin, the non-cyclic analog 8-bromo-AMP was even more effective, indicating that 8-bromo-cAMP behaves as a cytokinin analog, rather than a second messenger, in stimulating TE differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.