Membrane proteins participate in nearly all cellular processes; however, because of experimental limitations, their characterization lags far behind that of soluble proteins. Peripheral membrane proteins are particularly challenging to study because of their inherent propensity to adopt multiple and/or transient conformations in solution and upon membrane association. In this review, we summarize useful biophysical techniques for the study of peripheral membrane proteins and their application in the characterization of the membrane interactions of the natively unfolded and Parkinson’s disease (PD) related protein, α-synuclein (α-syn). We give particular focus to studies that have led to the current understanding of membrane-bound α-syn structure and the elucidation of specific membrane properties that affect α-syn-membrane binding. Finally, we discuss biophysical evidence supporting a key role for membranes and α-syn in PD pathogenesis.
α-Synuclein (α-syn) membrane interactions are implicated in the pathogenesis of Parkinson's disease. Fluorescence and neutron reflectometry (NR) measurements reveal that α-syn penetrates ∼9-14 Å into the outer leaflet of the bilayer, with a substantial portion of the membrane-bound polypeptide extending into the aqueous solvent. For the first time, to our knowledge, we used NR to obtain direct quantitative evidence of α-syn-induced membrane thinning. To examine the effect of specific residues on membrane penetration depths, we used a series of W4-containing N-terminal peptides. We identified that the first 15 residues (P15) nearly recapitulate the features of the full-length protein (i.e., partition constants, molecular mobility, and insertion of the W4 side chain into the bilayer), and found that as few as the first four N-terminal residues are sufficient for vesicle binding. Although at least one imperfect amphipathic repeat sequence (KAKEGV) is required for α-helical formation, secondary structural formation has little effect on membrane affinity. To develop an N-terminal α-syn model for bilayer interactions, we performed molecular-dynamics simulations of the P15 peptide submerged in a bilayer. The simulation results are highly consistent with experimental data indicating a broad low-energy region (8.5-14.5 Å) for W4 insertion.
Pmel17 is a functional amyloidogenic protein whose fibrils act as scaffolds for pigment deposition in human skin and eyes. We have used the repeat domain (RPT, residues 315-444), an essential luminal polypeptide region of Pmel17, as a model system to study conformational changes from soluble unstructured monomers to β-sheet-containing fibrils. Specifically, we report on the effects of solution pH (4 → 7) mimicking pH conditions of melanosomes, acidic organelles where Pmel17 fibrils are formed. Local, secondary, and fibril structure were monitored via intrinsic Trp fluorescence, circular dichroism spectroscopy, and transmission electron microscopy, respectively. We find that W423 is a highly sensitive probe of amyloid assembly with spectral features reflecting local conformational and fibril morphological changes. A critical pH regime (5 AE 0.5) was identified for fibril formation suggesting the involvement of at least three carboxylic acids in the structural rearrangement necessary for aggregation. Moreover, we demonstrate that RPT fibril morphology can be transformed directly by changing solution pH. Based on these results, we propose that intramelanosomal pH regulates Pmel17 amyloid formation and its subsequent dissolution in vivo.fibril | fluorescence | melanosome | tryptophan | melanin
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.