A comparative analysis of the discriminating power of laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), each coupled with refractive index (RI) measurements, is presented for a study of 23 samples of automobile float glass. Elemental emission intensity ratios (LIBS) and elemental concentration ratios (LA-ICP-MS) and their associated confidence intervals were calculated for each float glass sample. The ratios and confidence intervals were used to determine the discrimination power of each analytical method. It was possible to discriminate 83% of the glass samples with 99% confidence based on LIBS spectra alone, and 96-99% of the samples could be discriminated based on LIBS spectra taken in conjunction with RI data at the same confidence level. LA-ICP-MS data allowed for 100% discrimination of the samples without the need for RI data. The results provide evidence to support the use of LIBS combined with RI for forensic analysis of float glass in laboratories that do not have access to LA-ICP-MS.
Automotive paint evidence is one of the most significant forms of evidence obtained in automotive-related incidents. Therefore, the analysis of automotive paint evidence is imperative in forensic casework. Most analytical schemes for automotive paint characterization involve optical microscopy, followed by infrared spectroscopy and pyrolysis-gas chromatography mass spectrometry ( py-GCMS) if required. The main drawback with py-GCMS, aside from its destructive nature, is that this technique is relatively time intensive in comparison to other techniques. Direct analysis in real-time-time-of-flight mass spectrometry (DART-TOFMS) may provide an alternative to py-GCMS, as the rapidity of analysis and minimal sample preparation affords a significant advantage. In this study, automotive clear coats from four vehicles were characterized by DART-TOFMS and a standard py-GCMS protocol. Principal component analysis was utilized to interpret the resultant data and suggested the two techniques provided analogous sample discrimination. Moreover, in some instances DART-TOFMS was able to identify components not observed by py-GCMS and vice versa, which indicates that the two techniques may provide complementary information. Additionally, a thermal desorption/pyrolysis DART-TOFMS methodology was also evaluated to characterize the intact paint chips from the vehicles to ascertain if the linear temperature gradient provided additional discriminatory information. All the paint samples were able to be discriminated based on the distinctive thermal desorption plots afforded from this technique, which may also be utilized for sample discrimination. On the basis of the results, DART-TOFMS may provide an additional tool to the forensic paint examiner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.