Arrestins regulate signaling and trafficking of G protein-coupled receptors by virtue of their preferential binding to the phosphorylated active form of the receptor. To identify sites in arrestin involved in receptor interaction, a nitroxide-containing side chain was introduced at each of 28 different positions in visual arrestin, and the dynamics of the side chain was used to monitor arrestin interaction with phosphorylated forms of its cognate receptor, rhodopsin. At physiological concentrations, visual arrestin associates with both inactive dark phosphorylated rhodopsin (P-Rh) and light-activated phosphorylated rhodopsin (P-Rh*). Residues distributed over the concave surfaces of the two arrestin domains are involved in weak interactions with both states of phosphorhodopsin, and the flexible C-terminal sequence (C-tail) of arrestin becomes dynamically disordered in both complexes. A large-scale movement of the C-tail is demonstrated by direct distance measurements using a doubly labeled arrestin with one nitroxide in the C-tail and the other in the N-domain. Despite some overlap, the molecular "footprint" of arrestin bound to P-Rh and P-Rh* is different, showing the structure of the complexes to be unique. Strong immobilizing interactions with residues in a highly flexible loop between beta-strands V and VI are only observed in complex with the activated state. This result identifies this loop as a key recognition site in the arrestin-P-Rh* complex and supports the view that flexible sequences are key elements in protein-protein interactions.
SummaryArrestins regulate the activity and subcellular localization of G protein-coupled receptors and other signaling molecules. Here we demonstrate that arrestins bind microtubules (MTs) in vitro and in vivo. The MT-binding site on arrestins significantly overlaps with the receptor-binding site, but the conformations of MT-bound and receptor-bound arrestin are different. Arrestins recruit ERK1/2 and the E3 ubiquitin ligase Mdm2 to microtubules in cells, similar to the arrestin-dependent mobilization of these proteins to the receptor. Arrestin-mediated sequestration of ERK to MTs reduces the level of ERK activation. In contrast, recruitment of Mdm2 to microtubules by arrestin channels Mdm2 activity toward cytoskeleton-associated proteins, dramatically increasing their ubiquitination. The mobilization of signaling molecules to microtubules is a novel biological function of arrestin proteins.
A distinguishing feature of rod arrestin is its ability to form oligomers at physiological concentrations. Using visible light scattering, we show that rod arrestin forms tetramers in a cooperative manner in solution. To investigate the structure of the tetramer, a nitroxide side chain (R1) was introduced at 18 different positions. The effects of R1 on oligomer formation, EPR spectra, and inter-spin distance measurements all show that the structures of the solution and crystal tetramers are different. Inter-subunit distance measurements revealed that only arrestin monomer binds to light-activated phosphorhodopsin, whereas both monomer and tetramer bind microtubules, which may serve as a default arrestin partner in dark-adapted photoreceptors. Thus, the tetramer likely serves as a 'storage' form of arrestin, increasing the arrestin-binding capacity of microtubules while readily dissociating to supply active monomer when it is needed to quench rhodopsin signaling.
A unique aspect of arrestin-3 is its ability to support both receptor-dependent and receptor-independent signaling. Here, we show that inositol hexakisphosphate (IP6) is a non-receptor activator of arrestin-3 and report the structure of IP6-activated arrestin-3 at 2.4-Å resolution. IP6-activated arrestin-3 exhibits an inter-domain twist and a displaced C-tail, hallmarks of active arrestin. IP6 binds to the arrestin phosphate sensor, and is stabilized by trimerization. Analysis of the trimerization surface, which is also the receptor-binding surface, suggests a feature called the finger loop as a key region of the activation sensor. We show that finger loop helicity and flexibility may underlie coupling to hundreds of diverse receptors and also promote arrestin-3 activation by IP6. Importantly, we show that effector-binding sites on arrestins have distinct conformations in the basal and activated states, acting as switch regions. These switch regions may work with the inter-domain twist to initiate and direct arrestin-mediated signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.