The emergence of the Industry 4.0 concept and the profound digital transformation of the industry plays a crucial role in improving organisations' supply chain (SC) performance, consequently achieving a competitive advantage. The order fulfilment process (OFP) consists of one of the key business processes for the organization SC and represents a core process for the operational logistics flow. The dispatch workflow process consists of an integral part of the OFP and is also a crucial process in the SC of cement industry organizations. In this work, we focus on enhancing the order fulfilment process by improving the dispatch workflow process, specifically with respect to the cement loading process. Thus, we proposed a machine learning (ML) approach to predict weighing deviations in the cement loading process. We adopted a realistic and robust rolling window scheme to evaluate six classification models in a realworld case study, from which the random forest (RF) model provides the best predictive performance. We also extracted explainable knowledge from the RF classifier by using the Shapley additive explanations (SHAP) method, demonstrating the influence of each input data attribute used in the prediction process.INDEX TERMS Anomaly prediction, Dispatch workflow process, Machine learning, Order fulfilment process, Weighing systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.