This paper presents a novel modulation scheme known as the nonzero staircase modulation scheme for switching DC-DC boost converters. This modulation scheme generates two distinct pulse trains/firing signals when a 50 Hz nonzero staircase modulating signal is compared with a 1.5 kHz triangular wave signal. Unlike the conventional modulation schemes, the proposed novel modulation scheme provides two distinctive trains of pulse-width modulated signals for mitigating low and high harmonics. It also possesses 0.56% total harmonic distortions (THD) of the output voltage waveform system, a power output of 4591 W, and THD of 1.12% in the DC-DC boost converter system. It has a simple design and low power loss of 209 W. The proposed scheme enables the single switch boost DC-DC converter used to have an efficiency of 96%. The proposed scheme can be applied in single switch or double switch boost DC-DC converter based-hospital equipment.
This paper presents an assessment of the levels of total harmonic distortion (THD) in buck-boost DC-AC converters using triangular wave and saw-tooth unipolar based-modulation schemes. This paper seeks to identify a better technique for mitigating the total harmonic distortion on buck-boost DC-AC converters under unipolar carrier-based modulation schemes. This was achieved by subjecting the buck-boost DC-AC converter under triangular wave-based and saw-tooth based-unipolar modulation schemes. The voltage and current output of the buck- boost DC-AC converter under each scheme was analysed using a power GUI Fast Fourier Transform (FFT) analytical tool resident in the MATLAB Simulink environment unlike with the conventional scheme of computing the percentage of THD. The test system was obtained by a combination of DC-DC buck-boost converter, H-bridge based-insulated unipolar gate transistors, and a logic control unit. It was realized that THD of 0.2865%, peak output voltage of 294.1V and current of 9.805A were obtained by using the saw-tooth based-unipolar modulation scheme, whereas a THD of 0.1479%, peak output voltage of 297.4V and current of 9.53A were obtained by using the triangular wave based-bipolar modulation scheme on the same Buck-boost DC-AC converter circuit. The results imply a high power factor utilization and low power loss in the triangular wave based-unipolar modulation scheme compared to the saw-tooth based-unipolar modulation technique for improving the performance characteristics of the buck-boost converter system. This study showed that power drives and heavy load machines based-power electrical loads are required to use the saw-tooth based-unipolar modulation (STBUM) scheme for high current and low THD%, whereas sensitive power electrical loads such as hospital equipment and communication industries based-power electronic devices are required to use the triangular wave-based unipolar modulation (TWBUM) scheme due to low current and THD%.
This paper presents a headroom-based optimization for the placement of distributed generation (DG) in a distribution substation. The penetration limits of DGs into the existing distribution substations are often expressed as a function of the feeder’s hosting capacity (headroom). Therefore, it is important to estimate the reliability of the network's operation as well as that of the limits imposed by the power quality standards by evaluating of the hosting capacity (headroom) of the existing distribution feeder substation. This study aims at developing a novel algorithm for positioning a bus with permissible headroom capacity for DG positioning without causing voltage violations but maximizing the active power supply. Since DG increases short-circuit faults, the algorithm is useful for utility companies to select feeder substations that have permissible headroom capacity for DG installation and thus, contributing to reducing high DG penetration in the network. The modeling and optimization were carried out the Power System Software for Engineers (PSS/E) environment using the IEEE 14-bus test system. The results obtained from the case study show that only two (2) feeder substations out of fourteen (14) have the permissible headroom capacity for DG connections.
This paper presents a low-cost printed circuit board (PCB) design technique and processes using ferric chloride (𝑭𝒆𝑪𝒍𝟑) solution on a metal plate for a design topology. The PCB design makes a laboratory prototype easier by reducing the work piece size, eliminating the ambiguous connecting wires and breadboards circuit errors. This is done by manual etching of the designed metal plate via immersion in ferric chloride solutions for a given time interval 0-15mins. With easy steps, it is described on how to make a conventional single-sided printed circuit board with low-cost, time savings and reduced energy from debugging. The simulation and results of the printed circuit is designed and verified in the Multisim software version 14.0 and LeCroy WJ35Aoscilloscope respectively.
Keywords: Etching, Ferric Chloride, Insertion, Multisim, Metal Plate, Printed Circuit Board
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.