This research studies the capacitated green vehicle routing problem (CGVRP), which is an extension of the green vehicle routing problem (GVRP), characterized by the purpose of harmonizing environmental and economic costs by implementing effective routes to meet any environmental concerns while fulfilling customer demand. We formulate the mathematical model of the CGVRP and propose a simulated annealing (SA) heuristic for its solution in which the CGVRP is set up as a mixed integer linear program (MILP). The objective of the CGVRP is to minimize the total distance traveled by an alternative fuel vehicle (AFV). This research conducts a numerical experiment and sensitivity analysis. The results of the numerical experiment show that the SA algorithm is capable of obtaining good CGVRP solutions within a reasonable amount of time, and the sensitivity analysis demonstrates that the total distance is dependent on the number of customers and the vehicle driving range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.