Solar heat, already captured by vast asphalt fields in urban areas, is potentially a huge energy resource. The vertical soil temperature profile, i.e., low enthalpy geothermal energy, reveals how efficiently the irradiation is absorbed or radiated back to the atmosphere. Measured solar irradiation, heat flux on the asphalt surface and temperature distribution over a range of depths describe the thermal energy from an asphalt surface down to 10 m depth. In this study, those variables were studied by long-term measurements in an open-air platform in Finland. To compensate the nighttime heat loss, the accumulated heat on the surface should be harvested during the sunny daytime periods. A cumulative heat flux over one year from asphalt to the ground was 70% of the cumulative solar irradiance measured during the same period. However, due to the nighttime heat losses, the net heat flux during 5 day period was only 18% of the irradiance in spring, and was negative during autumn, when the soil was cooling. These preliminary results indicate that certain adaptive heat transfer and storage mechanisms are needed to minimize the loss and turn the asphalt layer into an efficient solar heat collector connected with a seasonal storage system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.