Microwave ablation (MWA) is known as an alternative therapy to surgery to treat tumors. However, MWA-based therapy requires advanced approaches in order to prevent causing damage to healthy tissue around the tumor and selectively target the desired area. Nanoparticles are considered promising tools in biomedicine to fulfill these requirements. This study was carried out in order to analyze the effect of iron oxide nanoparticles on the temperature increment during radiofrequency ablation therapy with different salt solutions including NaCl and KCl as inorganics, and pictic acid (IP6) as organic. Iron oxide nanoparticles (IONPs) with a size of 42 nm, a surface area of 77.1 m2/g, and a high magnetic field absorption capability of 0.893 A/m were synthesized. According to the results, the magnetic nanoparticles from the IP6 solution have a higher number of charges in the recipes, and also, they reacted faster than the commercially available salt solutions like KCl and NaCl since six NaSO3 molecules are in the content of the IP6. With the absorption of 5-20 % higher electromagnetic power density depending on the content of salt solution with IP6 leads to 7-10 % temperature increase under 59 W microwave input power with 2 minutes exposure. This results show that the novelty of a dipole-dipole interaction of organic IP6 with IONPs improve the ablation performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.