Classification of a synthetic aperture radar (SAR) image is an essential process for SAR image analysis and interpretation. Recent advances in imaging technologies have allowed data sizes to grow, and a large number of applications in many areas have been generated. However, analysis of high-resolution SAR images, such as classification, is a time-consuming process and high-speed algorithms are needed. In this study, classification of high-speed denoised SAR image patches by using Apache Spark clustering framework is presented. Spark is preferred due to its powerful open-source cluster-computing framework with fast, easy-to-use, and in-memory analytics. Classification of SAR images is realized on patch level by using the supervised learning algorithms embedded in the Spark machine learning library. The feature vectors used as the classifier input are obtained using gray-level cooccurrence matrix which is chosen to quantitatively evaluate textural parameters and representations. SAR image patches used to construct the feature vectors are first applied to the noise reduction algorithm to obtain a more accurate classification accuracy. Experimental studies were carried out using naive Bayes, decision tree, and random forest algorithms to provide comparative results, and significant accuracies were achieved. The results were also compared with a state-of-the-art deep learning method. TerraSAR-X images of high-resolution real-world SAR images were used as data.
In this study, surfaces of solid objects are coloured with Cropped Quad-Tree method utilizing GPU computing optimization. There are numerous methods used in solid object colouring. When the studies carried out in different fields are taken into consideration, it is seen that quad-tree method displays a prominent position in terms of speed and performance. Cropped quad-tree is obtained as a result of the developments seen with the frequent use of this method in the field of computer sciences. Two different versions of algorithm which operate recursively on CPU and at the same time which use GPU computing optimization are used in this study. Besides, OpenGL is used for graphics drawing process. Within the setting of the study, results are obtained via CPU and GPU's, at first using Quad-Tree method and then Cropped Quad-Tree method. It is observed that GPU computing is obviously faster than CPU computing and Cropped Quad-Tree method produces rapid results compared to Quad-Tree method as a result of performance. GPU computing method boosted approximately performance by up to 20 times compared to only CPU usage; furthermore, cropped quad-tree method boosted approximately performance of algorithm by up to 25 times on average dependent on screen and object size.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.