PurposeThe study aims to design the limited number of random working cycle as a warranty term and propose two types of warranties, which can help manufacturers to ensure the product reliability during the warranty period. By extending the proposed warranty to the consumer's post-warranty maintenance model, besides the authors investigate two kinds of random maintenance policies to sustain the post-warranty reliability, i.e. random replacement first and random replacement last. By integrating depreciation expense depending on working time, the cost rate is constructed for each random maintenance policy and some special cases are provided by discussing parameters in cost rates. Finally, sensitivities on both the proposed warranty and random maintenance policies are analyzed in numerical experiments.Design/methodology/approachThe working cycle of products can be monitored by advanced sensors and measuring technologies. By monitoring the working cycle, manufacturers can design warranty policies to ensure product reliability performance and consumers can model the post-warranty maintenance to sustain the post-warranty reliability. In this article, the authors design a limited number of random working cycles as a warranty term and propose two types of warranties, which can help manufacturers to ensure the product reliability performance during the warranty period. By extending a proposed warranty to the consumer's post-warranty maintenance model, the authors investigate two kinds of random replacement policies to sustain the post-warranty reliability, i.e. random replacement first and random replacement last. By integrating a depreciation expense depending on working time, the cost rate is constructed for each random replacement and some special cases are provided by discussing parameters in the cost rate. Finally, sensitivities to both the proposed warranties and random replacements are analyzed in numerical experiments.FindingsIt is shown that the manufacturer can control the warranty cost by limiting number of random working cycle. For the consumer, when the number of random working cycle is designed as a greater warranty limit, the cost rate can be reduced while the post-warranty period can't be lengthened.Originality/valueThe contribution of this article can be highlighted in two key aspects: (1) the authors investigate early warranties to ensure reliability performance of the product which executes successively projects at random working cycles; (2) by integrating random working cycles into the post-warranty period, the authors is the first to investigate random maintenance policy to sustain the post-warranty reliability from the consumer's perspective, which seldom appears in the existing literature.
A monitoring system (MS) has been used to monitor products’ job cycles. It is indicated that by incorporating the job cycle into the product’s life cycle, warrantors can devise novel warranty models and consumers can define and model random maintenances sustaining the reliability of the product through warranty. In this study, by incorporating limited job cycles and a refund into the traditional free repair warranty, a two-dimensional free repair warranty with a refund (2DFRW-R) is devised for guaranteeing the product reliability to consumers. Under the condition that 2DFRW-R is planned to guarantee product reliability, a bivariate random periodic replacement (BRPR) (i.e., a random periodic replacement where the accomplishment of the Nth job cycle and the replacement time T are designed as replacement limits) is modeled to sustain the post-warranty reliability from the point of view of the consumer. From the point of view of the warrantor, the warranty cost related to 2DFRW-R is derived, and the characteristics of 2DFRW-R are explored. From the point of view of consumers, the expected cost rate related to BRPR is constructed, and the existence and uniqueness of the optimal BRPR are summarized as well. By discussing parameters, several special cases are derived. The characteristics of the proposed models are analyzed in numerical examples.
An operating condition recognition approach of wind turbine spindle is proposed based on supervisory control and data acquisition (SCADA) normal data drive. Firstly, the SCADA raw data of wind turbine under full working conditions are cleaned and feature extracted. Then the spindle speed is employed as the output parameter, and the single and combined normal behavior model of the wind turbine spindle is constructed sequentially with the preprocessed data, with the evaluation indexes selected as the optimal model. Finally, calculating the spindle operation status index according to the sliding window principle, ascertaining the threshold value for identifying the abnormal spindle operation status by the hypothesis of small probability event, analyzing the 2.5 MW wind turbine SCADA data from a domestic wind field as a sample, The results show that the fault warning time of the early warning model is 5.7 h ahead of the actual fault occurrence time, as well as the identification and early warning of abnormal wind turbine spindle operation without abnormal data or a priori knowledge of related faults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.