The goal of the paper is to study the charge transfer and reactions at the columbite-(Fe) (FeNb2O6) mineral surface during the HF leaching process. In this paper, X-ray photoelectron spectroscopy (XPS), leaching experiments, and density functional theory (DFT) calculations were used to study the surface element adsorption, charge distribution, chemical state, and energy changes of the mineral surface during the process of leaching columbite–(Fe) with different concentrations of hydrofluoric acid. The results showed that as the concentration of F atoms was increased during the acid leaching process, the Nb–O bond was more likely to be broken than the Fe–O bond; the amount of charge transferred from Nb atom to F atom (0.78 e–0.94 e/atom) was greater than that from Fe atom to the F atom (0.25 e–0.28 e/atom), so it was determined that compared to Fe atoms, it was easier for the Nb atoms to bind to F. The results of XPS analysis showed that the electron binding energies of Nb5+–O, Fe3+–O, and Fe2+–O bonds on the mineral surface increased sequentially, and the M–O bond broke during the acid leaching process, forming more stable M–F bonds. Therefore, the Nb5+–F bonds were easier to form a stable structure. Combined with the ICP results, it was found that in the filtrate after 5M HF and 10M HF acid leaching minerals, c(Nb)/c(Fe) were 2.69 and 2.95, respectively, and the concentration ratio of Nb to Fe element in the mineral was 2 which was lower than 2.69 and 2.95, confirming the result of DFT calculation and illustrating that Nb atoms in columbite-(Fe) mineral were more soluble than Fe atoms.
Duck is commonly used for premium meat adulteration. A simple, rapid, accurate, and affordable method is urgently needed for duck ingredient identification. Therefore, we developed two recombinase polymerase amplification (RPA) assays based on the duck-specific Cytb gene for rapid detection of duck ingredient in this study, and there were less than 30 min from sample to answer. Two RPA assays were validated to demonstrate good inter- and intra-species specificity. The real-time RPA could detect as low as 10 pg of duck DNA while the RPA combined with lateral flow test strips (LFS RPA) could detect down to 1 pg, and both could detect 0.1% duck meat adulteration. Then the two RPA assays applicability was confirmed using 113 different foods. The effects of background DNA and whole blood on RPA amplification were also analyzed, which did not affect the feasibility of the developed two RPA assays. The developed real-time RPA and LFS RPA would be promising user-friendly on-site detection methods for rapid detecting duck ingredient in different meat products.
Hepatitis E virus (HEV) is a zoonotic pathogen that causes global hepatitis E. Outbreaks of hepatitis E are directly linked to the consumption of pork liver products. Herein reverse transcription recombinase polymerase amplification assays targeting the ORF2 gene were developed for the rapid detection of HEV by integrating the fluorescence detection platform (qRT-RPA) and the visible lateral flow biosensor by naked eyes (LFB RT-RPA). The qRT-RPA assay effectively detected HEV RNA with a limit of detection (LOD) of 154 copies/μl (95%CI: 126–333 copies/µl) in Genie III at 41°C for 20 min. Besides this, the LFB RT-RPA detected the HEV RNA with a LOD of 24 copies/μl (95%CI: 20–57 copies/µl) in an incubator block at 41°C for 20 min. The developed RT-RPA assays also showed good specificity for HEV, with no cross-reactions with any of the other important swine pathogens examined in this work. The performance of the developed RT-RPA assays was validated on 14 HEV RNA-positive and 66 HEV RNA-negative raw pork liver samples identified by a previously described qRT-PCR. Consequently, 11 and 12 samples were HEV RNA-positive as detected by the qRT-RPA and the LFB RT-RPA, respectively. Compared to qRT-PCR, the qRT-RPA and LFB RT- RPA assays revealed a coincidence rate of 96.3 and 97.5% as well as a Kappa value of 0.858 and 0.908, respectively. These results ascertain that the developed RT-RPA assays are effective diagnostic tools for the point-of-care detection of HEV in resource-limited settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.