Step-scanned radar antennas represent a new application of radar technology for detection of targets and estimation of their locations. In this paper we describe a new development called Scan-MUSIC (SMUSIC), which extends the application of the MUSIC algorithm to improve the cross-range resolution of closely spaced point targets with a step-scanned radar. This paper also demonstrates that SMUSIC can be used with radar data obtained with an experimental Millimeter Wave (MMW) coherent scanning radar. While a mathematical proof of resolvability has not yet been established for the scanning antenna, we have shown that we can apply the spatial smoothing method to the SMUSIC algorithm to estimate the closely spaced point targets that are within the beamwidth of the radar antenna. The results show that the targets that are spaced less than 1/4 of the antenna beamwidth and are interfering can be resolved with SMUSIC in constructive interference case. This paper also presents the performance of the SMUSIC superresolution algorithm for the scanning antenna in terms of probability of successful resolution and the total average mean-squared error of target locations, based on the simulated data generated by using an experimental antenna pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.