Mobile edge computing usually uses cache to support multimedia contents in 5G mobile Internet to reduce the computing overhead and latency. Mobile edge caching (MEC) systems are vulnerable to various attacks such as denial of service attacks and rogue edge attacks. This article investigates the attack models in MEC systems, focusing on both the mobile offloading and the caching procedures. In this paper, we propose security solutions that apply reinforcement learning (RL) techniques to provide secure offloading to the edge nodes against jamming attacks. We also present light-weight authentication and secure collaborative caching schemes to protect data privacy. We evaluate the performance of the RL-based security solution for mobile edge caching and discuss the challenges that need to be addressed in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.