The results of previous studies showed that ECG could detect CHD in children with a detection rate of 76.43%. Although this result is better than the traditional CHD screening method, the sensitivity still needs to be improved if it is to be popularized clinically. Based on the previous ECG recording data, this study selects the more representative cardiac cycle segments to identify CHD, in order to achieve better screening effect. Firstly, better cardiac cycle segment data were extracted from ECG records of each patient. The final data set contains 72626 patients and each patient has a 9-lead ECG segment with duration of about one second. Then we trained a RoR network to identify the underlying patients with CHD using 62626 samples in the dataset. When tested on an independent set of 10000 patients, the network model yielded values for the sensitivity, specificity, and accuracy of 0.93, 86.3%, 85.7%, and 85.7% respectively. It can be seen that extracting more effective cardiac cycle fragments can significantly improve the sensitivity of CHD screening on the basis of ensuring better specificity, so as to find more potential patients with congenital heart disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.