The recent success of neural language models (NLMs) on the Winograd Schema Challenge has called for further investigation of the commonsense reasoning ability of these models. Previous diagnostic datasets rely on crowd-sourcing which fails to provide coherent commonsense crucial for solving WSC problems. To better evaluate NLMs, we propose a logic-based framework that focuses on highquality commonsense knowledge. Specifically, we identify and collect formal knowledge formulas verified by theorem provers and translate such formulas into natural language sentences. Based on these true knowledge sentences, adversarial false ones are generated. We propose a new dataset named WINOLOGIC with these sentences. Given a problem in WINOLOGIC, NLMs need to decide whether the plausible knowledge sentences could correctly solve the corresponding WSC problems in a zero-shot setting. We also ask human annotators to validate WINOLOGIC to ensure it is humanagreeable. Experiments show that NLMs still struggle to comprehend commonsense knowledge as humans do, indicating that their reasoning ability could have been overestimated.
Knowledge graphs (KGs) are widely used to facilitate relation extraction (RE) tasks. While most previous RE methods focus on leveraging deterministic KGs, uncertain KGs, which assign a confidence score for each relation instance, can provide prior probability distributions of relational facts as valuable external knowledge for RE models. This paper proposes to exploit uncertain knowledge to improve relation extraction. Specifically, we introduce ProBase, an uncertain KG that indicates to what extent a target entity belongs to a concept, into our RE architecture. We then design a novel multi-view inference framework to systematically integrate local context and global knowledge across three views: mention-, entity- and concept-view. The experiment results show that our model achieves competitive performances on both sentence- and document-level relation extraction, which verifies the effectiveness of introducing uncertain knowledge and the multi-view inference framework that we design.
Recent methods based on pre-trained language models have shown strong supervised performance on commonsense reasoning. However, they rely on expensive data annotation and time-consuming training. Thus, we focus on unsupervised commonsense reasoning. We show the effectiveness of using a common framework, Natural Language Inference (NLI), to solve diverse commonsense reasoning tasks. By leveraging transfer learning from large NLI datasets, and injecting crucial knowledge from commonsense sources such as ATOMIC 2020 and ConceptNet, our method achieved state-of-the-art unsupervised performance on two commonsense reasoning tasks: WinoWhy and CommonsenseQA. Further analysis demonstrated the benefits of multiple categories of knowledge, but problems about quantities and antonyms are still challenging. * Corresponding Author A WinoWhy Example WSC Question: Joan made sure to thank Susan for all the help she had received. She refers to Joan because Reason: Joan is doing the thanking so she must have received the help. Label: Positive Convert WinoWhy to NLI Premise: Joan is doing the thanking so she must have received the help. Hypothesis: Joan made sure to thank Susan for all the help Joan had received.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.