Small regulatory RNAs (sRNAs) are involved in anti-viral defense and gene regulation. Although RNA-dependent RNA Polymerases (RdRPs) are known to produce sRNA in nematodes, plants and fungi, whether they play roles in sRNA biogenesis in other animals remains controversial. In this study, we study sRNAs in the ISE6 cell line, which is derived from the black-legged tick, an important vector of human and animal pathogens. We identify abundant classes of ~22nt sRNAs that require specific combinations of RdRPs and sRNA effector proteins (Argonautes or AGOs). RdRP-dependent sRNAs are mainly derived from sense and antisense strands of RNA polymerase III-transcribed genes and repetitive elements. Unlike C. elegans sRNA pathways, 5′-tri-phosphorylated sRNAs are not detected, suggesting that the tick pathways are distinct from the pathways known in worms. Knockdown of one of the RdRPs unexpectedly results in downregulation of a subset of viral transcripts, in contrast to their upregulation by AGO knockdown. Furthermore, we show that knockdown of AGO/RdRP causes misregulation of protein-coding genes including RNAi-related genes, suggesting feedback regulation. Luciferase assays demonstrate that one of the RdRP-regulated genes, the MEK1 ortholog IscDsor1 is regulated through its 3′UTR, where a putative sRNA target site resides. These results provide evidence that arachnid RdRPs are important sRNA biogenesis factors, and the discovery of novel pathways underscores the importance of characterizing sRNA biogenesis in various organisms to understand virus-vector interactions and to exploit RNAi for pest control.
Small regulatory RNAs (sRNAs) are involved in antiviral defense and gene regulation. Although roles of RNA-dependent RNA Polymerases (RdRPs) in sRNA biology are extensively studied in nematodes, plants and fungi, understanding of RdRP homologs in other animals is still lacking. Here, we study sRNAs in the ISE6 cell line, which is derived from the black-legged tick, an important vector of human and animal pathogens. We find abundant classes of ~22nt sRNAs that require specific combinations of RdRPs and sRNA effector proteins (Argonautes or AGOs). RdRP1-dependent sRNAs possess 5’-monophosphates and are mainly derived from RNA polymerase III-transcribed genes and repetitive elements. Knockdown of some RdRP homologs misregulates genes including RNAi-related genes and the regulator of immune response Dsor1. Sensor assays demonstrate that Dsor1 is downregulated by RdRP1 through the 3’UTR that contains a target site of RdRP1-dependent repeat-derived sRNAs. Consistent with viral gene repression by the RNAi mechanism using virus-derived small interfering RNAs, viral transcripts are upregulated by AGO knockdown. On the other hand, RdRP1 knockdown unexpectedly results in downregulation of viral transcripts. This effect is dependent on Dsor1, suggesting that antiviral immunity is enhanced by RdRP1 knockdown through Dsor1 upregulation. We propose that tick sRNA pathways control multiple aspects of immune response via RNAi and regulation of signaling pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.