The present study focuses on the mechanical properties of hydrophilically or hydrophobically modified poly(N‐isopropylacrylamide) (PNIPAAm) hydrogels, and all discussions on their improved mechanical strengths are based on the conformational effects of hydrophobic side chains attached to the comonomers and the structural differences between the crosslinkers. Three different types of monoalkyl itaconates, bearing octyl (Oc), cetyl (Ce), and cyclohexyl (CH) groups as comonomers, were used to prepare the copolymeric PNIPAAm hydrogels crosslinked with N,N′‐methylenebisacrylamide (BIS) and tetraallylammonium bromide (TAB) as neutral tetrafunctional and ionic octafunctional crosslinkers, respectively. The most striking result is the compressive E modulus of TAB‐crosslinked PNIPAAm hydrogel containing 10 mol % of mOcI. It reaches nearly 1.0 MPa and is independent of the temperature and pH of the swelling/shrinking medium. The result was discussed in terms of the inter/intramolecular interactions between hydrophobic octyl groups adopting a rod‐like conformation in the case of 25 °C/distilled deionized water (DDW) and 37 °C/DDW combinations. Further, it was observed that the electrostatic repulsive forces between the carboxylate groups on mOcI units could be suppressed even at 37 °C and pH 9 due to the rod‐like conformations of C8H17 groups. Its micrographs under bright‐field and polarized light supported the presence of an ordered anisotropic phase and multiple associations of extended, hydrophobic side chains. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 134, 45039.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.