Purpose To fast and accurately reconstruct human lung gas MRI from highly undersampled k‐space using deep learning. Methods The scheme was comprised of coarse‐to‐fine nets (C‐net and F‐net). Zero‐filling images from retrospectively undersampled k‐space at an acceleration factor of 4 were used as input for C‐net, and then output intermediate results which were fed into F‐net. During training, a L2 loss function was adopted in C‐net, while a function that united L2 loss with proton prior knowledge was used in F‐net. The 871 hyperpolarized 129Xe pulmonary ventilation images from 72 volunteers were randomly arranged as training (90%) and testing (10%) data. Ventilation defect percentage comparisons were implemented using a paired 2‐tailed Student's t‐test and correlation analysis. Furthermore, prospective acquisitions were demonstrated in 5 healthy subjects and 5 asymptomatic smokers. Results Each image with size of 96 × 84 could be reconstructed within 31 ms (mean absolute error was 4.35% and structural similarity was 0.7558). Compared with conventional compressed sensing MRI, the mean absolute error decreased by 17.92%, but the structural similarity increased by 6.33%. For ventilation defect percentage, there were no significant differences between the fully sampled and reconstructed images through the proposed algorithm (P = 0.932), but had significant correlations (r = 0.975; P < 0.001). The prospectively undersampled results validated a good agreement with fully sampled images, with no significant differences in ventilation defect percentage but significantly higher signal‐to‐noise ratio values. Conclusion The proposed algorithm outperformed classical undersampling methods, paving the way for future use of deep learning in real‐time and accurate reconstruction of gas MRI.
Objectives Multiple b-value gas diffusion-weighted MRI (DW-MRI) enables non-invasive and quantitative assessment of lung morphometry, but its long acquisition time is not well-tolerated by patients. We aimed to accelerate multiple b-value gas DW-MRI for lung morphometry using deep learning. Methods A deep cascade of residual dense network (DC-RDN) was developed to reconstruct high-quality DW images from highly undersampled k-space data. Hyperpolarized 129 Xe lung ventilation images were acquired from 101 participants and were retrospectively collected to generate synthetic DW-MRI data to train the DC-RDN. Afterwards, the performance of the DC-RDN was evaluated on retrospectively and prospectively undersampled multiple b-value 129 Xe MRI datasets. Results Each slice with size of 64 × 64 × 5 could be reconstructed within 7.2 ms. For the retrospective test data, the DC-RDN showed significant improvement on all quantitative metrics compared with the conventional reconstruction methods (p < 0.05). The apparent diffusion coefficient (ADC) and morphometry parameters were not significantly different between the fully sampled and DC-RDN reconstructed images (p > 0.05). For the prospectively accelerated acquisition, the required breath-holding time was reduced from 17.8 to 4.7 s with an acceleration factor of 4. Meanwhile, the prospectively reconstructed results showed good agreement with the fully sampled images, with a mean difference of −0.72% and −0.74% regarding global mean ADC and mean linear intercept (L m ) values. Conclusions DC-RDN is effective in accelerating multiple b-value gas DW-MRI while maintaining accurate estimation of lung microstructural morphometry, facilitating the clinical potential of studying lung diseases with hyperpolarized DW-MRI. Key Points• The deep cascade of residual dense network allowed fast and high-quality reconstruction of multiple b-value gas diffusionweighted MRI at an acceleration factor of 4. • The apparent diffusion coefficient and morphometry parameters were not significantly different between the fully sampled images and the reconstructed results (p > 0.05). • The required breath-holding time was reduced from 17.8 to 4.7 s and each slice with size of 64 × 64 × 5 could be reconstructed within 7.2 ms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.