Post-translational modifications (PTMs) mediated by nitric oxide (NO)-derived molecules have become a new area of research, as they can modulate the function of target proteins. Proteomic data have shown that ascorbate peroxidase (APX) is one of the potential targets of PTMs mediated by NO-derived molecules. Using recombinant pea cytosolic APX, the impact of peroxynitrite (ONOO–) and S-nitrosoglutathione (GSNO), which are known to mediate protein nitration and S-nitrosylation processes, respectively, was analysed. While peroxynitrite inhibits APX activity, GSNO enhances its enzymatic activity. Mass spectrometric analysis of the nitrated APX enabled the determination that Tyr5 and Tyr235 were exclusively nitrated to 3-nitrotyrosine by peroxynitrite. Residue Cys32 was identified by the biotin switch method as S-nitrosylated. The location of these residues on the structure of pea APX reveals that Tyr235 is found at the bottom of the pocket where the haem group is enclosed, whereas Cys32 is at the ascorbate binding site. Pea plants grown under saline (150mM NaCl) stress showed an enhancement of both APX activity and S-nitrosylated APX, as well as an increase of H2O2, NO, and S-nitrosothiol (SNO) content that can justify the induction of the APX activity. The results provide new insight into the molecular mechanism of the regulation of APX which can be both inactivated by irreversible nitration and activated by reversible S-nitrosylation.
ORCID IDs: 0000-0002-6609-7242 (C.M.-P); 0000-0002-2210-9547 (B.S.-C.); 0000-0001-5284-8837 (J.J.-R.); 0000-0002-1814-9212 (F.J.C.); 0000-0002-9477-9195 (J.J.B.).Nitro-fatty acids (NO 2 -FAs) are the product of the reaction between reactive nitrogen species derived of nitric oxide (NO) and unsaturated fatty acids. In animal systems, NO 2 -FAs are considered novel signaling mediators of cell function based on a proven antiinflammatory response. Nevertheless, the interaction of NO with fatty acids in plant systems has scarcely been studied. Here, we examine the endogenous occurrence of nitro-linolenic acid (NO 2 -Ln) in Arabidopsis and the modulation of NO 2 -Ln levels throughout this plant's development by mass spectrometry. The observed levels of this NO 2 -FA at picomolar concentrations suggested its role as a signaling effector of cell function. In fact, a transcriptomic analysis by RNA-seq technology established a clear signaling role for this molecule, demonstrating that NO 2 -Ln was involved in plant defense response against different abiotic-stress conditions, mainly by inducing heat shock proteins and supporting a conserved mechanism of action in both animal and plant defense processes. Bioinformatics analysis revealed that NO 2 -Ln was also involved in the response to oxidative stress conditions, mainly depicted by H 2 O 2 , reactive oxygen species, and oxygen-containing compound responses, with a high induction of ascorbate peroxidase expression. Closely related to these results, NO 2 -Ln levels significantly rose under several abiotic-stress conditions such as wounding or exposure to salinity, cadmium, and low temperature, thus validating the outcomes found by RNA-seq technology. Jointly, to our knowledge, these are the first results showing the endogenous presence of NO 2 -Ln in Arabidopsis (Arabidopsis thaliana) and supporting the strong signaling role of these molecules in the defense mechanism against different abiotic-stress situations.
Protein tyrosine nitration is a post-translational modification mediated by reactive nitrogen species (RNS) that is associated with nitro-oxidative damage. No information about this process is available in relation to higher plants during development and senescence. Using pea plants at different developmental stages (ranging from 8 to 71 days), tyrosine nitration in the main organs (roots, stems, leaves, flowers, and fruits) was analysed using immunological and proteomic approaches. In the roots of 71-day-old senescent plants, nitroproteome analysis enabled the identification a total of 16 nitrotyrosine-immunopositive proteins. Among the proteins identified, NADP-isocitrate dehydrogenase (ICDH), an enzyme involved in the carbon and nitrogen metabolism, redox regulation, and responses to oxidative stress, was selected to evaluate the effect of nitration. NADP-ICDH activity fell by 75% during senescence. Analysis showed that peroxynitrite inhibits recombinant cytosolic NADP-ICDH activity through a process of nitration. Of the 12 tyrosines present in this enzyme, mass spectrometric analysis of nitrated recombinant cytosolic NADP-ICDH enabled this study to identify the Tyr392 as exclusively nitrated by peroxynitrite. The data as a whole reveal that protein tyrosine nitration is a nitric oxide-derived PTM prevalent throughout root development and intensifies during senescence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.