C-type natriuretic peptide (CNP) is involved in the regulation of vascular homeostasis, which is at least partly mediated through agonism of natriuretic peptide receptor C (NPR-C), and loss of this signaling has been associated with vascular dysfunction. As such, NPR-C is a novel therapeutic target to treat cardiovascular diseases. A series of novel small molecules have been designed and synthesized, and their structure−activity relationships were evaluated by a surface plasmon resonance binding assay. The biological activity of hit compounds was confirmed through organ bath assays measuring vascular relaxation and inhibition of cAMP production, which was shown to be linked to its NPR-C activity. Lead compound 1 was identified as a potent agonist (EC 50 ∼ 1 μM) with promising in vivo pharmacokinetic properties.
Adipocytes are energy stores of the body which also play a role in physiological regulation and homeostasis through their endocrine activity. Adipocyte circadian clocks drive rhythms in gene expression, and dysregulation of these circadian rhythms associates with pathological conditions such as diabetes. However, although the role of circadian rhythms in adipose cells and related tissues has been studied from phsyiological and molecular perspectives, they have not yet been explored from an electrical perspective. Research into electro‐chronobiology has revealed that electrical properties have important roles in peripheral clock regulation independently of transcription–translation feedback loops. We have used dielectrophoresis to study electrophysiological rhythms in pre‐adipocytes – representing an adipocyte precursor and nucleated cell‐based model, using serum shocking as the cellular method of clock entrainment. The results revealed significant electrophysiological rhythms, culminating in circadian (ca. 24 hourly) cycles in effective membrane capacitance and radius properties, whereas effective membrane conductance was observed to express ultradian (ca. 14 hourly) rhythms. These data shed new light into pre‐adipocyte electrical behaviour and present a potential target for understanding and manipulation of metabolic physiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.