Alteration and degradation of benthic structure by fishing gear can impede efforts to manage fish stock sustainably. Although the impacts of mobile gear are well known, effects of passive gear (e.g. fish traps) upon structure have been little studied. We modified commercial traps for American lobster Homarus americanus and black sea bass Centropristis striata by attaching GoPro® cameras to ascertain the degree and nature of impacts to seafloor habitats. Customized traps were included within a line of 20 traps, deployed and retrieved according to standard commercial fishing practice. Less than 5% of traps landed directly on bedforms when deployed. However, during retrieval traps dragged along the ocean floor, increasing trap–habitat contact rate to 50%, and causing traps to collide with corals, bryozoans, and other epifauna. Drag time of traps depended on the position in the trap line. Experimentally extending the trap line reduced drag time during retrieval for traps near the distal end of the line. Our results show that impacts of commercial trap fishing can be substantial during trap retrieval, and that the impact depends on their location on a trap line. Fishing practices should be developed that minimize effects of trap retrieval on structural benthic habitat.
Autogenic engineers (i.e., biogenic structure) add to habitat complexity by altering the environment by their own physical structures. The presence of autogenic engineers is correlated with increases in species abundance and biodiversity. Biogenic structural communities off the coast of Delaware, Maryland, and Virginia (Delmarva) are comprised of multiple species including boring sponge Cliona celata, various hydroids (i.e., Tubularia sp., Obelia sp., Campanular sp.), northern stone coral Astrangia poculata, sea whips Leptogorgia virgulata, and blue mussels Mytilus edulis. Sea whips are soft corals that provide the majority of vertical height to benthic structure off the coast of the Delmarva peninsula. The mid-Atlantic bight is inhabited by several economically valuable fishes; however, data regarding habitat composition, habitat quality, and fish abundance are scarce. We collected quadrat and sea whip images from 12 artificial reef sites (i.e., shipwrecks) ranging from 10 to 24 m depth to determine proportional coverage of biogenic structures and to assess habitat health, respectively. Underwater video surveys were used to estimate fish abundances on the 12 study sites and determine if fish abundance was related to biogenic coverage and habitat health. Our results showed that higher fish abundance was significantly correlated with higher proportional sea whip coral coverage, but showed no significant relationship to other biogenic structure. Assessment of sea whip condition (as a damage index) showed that sea whip corals on artificial reefs off the Delmarva coast exhibited minor signs of degradation that did not differ significantly among study sites.
Harvest restrictions (e.g. size, sex or species limitations) that are implemented to maintain sustainable fisheries often result in by-catch, e.g. unwanted non-target catch. By-catch is frequently discarded back into the ocean and assumed to survive. However, discarded fishes can succumb to delayed mortality resulting from accumulated stress from fishing activity, and such mortality can impede sustainability efforts. Quantifying reflex and behavioural impairments is a quick and cost-effective method to predict discard-related mortality in some species. We developed and evaluated the effectiveness of a release condition index, based on a reflex-action mortality prediction (RAMP) model, for predicting delayed mortality of black sea bass (Centropristis striata) caught and discarded by the commercial trap fishery in the Mid-Atlantic Bight. Accumulation of impairments, and therefore release condition index, was strongly correlated with delayed mortality of black sea bass discarded and held in sea cages. This is the first release condition index validation study to predict mortality in black sea bass and could be a useful approach for predicting delayed mortality in the commercial fishery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.