Background Laser light is known to stimulate nerves. This study investigated alternative wavelengths for nerve stimulation. Materials and Methods The sciatic nerves of rats were irradiated with four different lasers—a Ho:YAG (2100 nm), a Yb:glass fiber laser (1495 nm) and diode lasers (1450 nm and 1540 nm). Results All lasers evoked a visible leg twitch response, and electromyography confirmed muscle activation. The Yb:glass laser at 1495 nm delivered through a single mode fiber was found to be the most effective stimulus. The stimulation threshold for a 2 millisecond pulse from the Yb:glass laser was determined to be 3.7 ± 2.8 mJ/cm2. Conclusions The Yb:glass laser has the potential for use in neurostimulation, as an alternative to electrical stimulation.
Background Otoplasty is the current standard of care for treating prominent ears, a psychologically and sometimes functionally disabling disorder. The technically demanding procedure carries many risks such as poor aesthetic outcome, need for revision surgery, and need for general anesthesia. This study investigates the use of laser irradiation combined with cryogen skin cooling and stenting to reshape cartilage in the ears of New Zealand white rabbits. Methods In this prospective, randomized, internally controlled animal study, the right ears of 9 rabbits were mechanically deformed with a jig and then irradiated with a 1450-nm diode laser combined with cryogen skin cooling (14 J/pulse with cryogen spray for 33 milliseconds per cycle and a 6-mm spot size). The left ear served as the control. The ears were splinted for 1, 3, or 4 weeks. The rabbits were then given a lethal dose of intravenous pentobarbital, and the splints were removed and ears examined and photographed. Light and confocal microscopy were performed on the specimens. Results Shape change was observed in all 9 treated rabbit ears, while none of the control ears (stenting alone) showed significant change. Qualitatively, reshaped ears were stiffer after 4 weeks of splinting than after 1 or 3 weeks. None of the rabbits showed evidence of skin injury nor did they show signs of postprocedural pain. Findings from histologic analysis in the treated areas showed evidence of an expanded chondrocyte population in the region of laser irradiation, along with some perichondrial thickening and some fibrosis of the deep dermis. Confocal microscopy revealed minimal cellular death at 1 week and none thereafter. Conclusions Cartilage reshaping using laser energy can be performed safely transcutaneously using cryogen spray cooling in rabbits. This animal model has similarity to human ears with regard to skin and cartilage thickness and is a stepping stone toward developing minimally invasive laser auricle reshaping in humans.
Background and Objectives Trauma, emergent tracheostomy, and prolonged intubation are common causes of severe deformation and narrowing of the trachea. Laser technology may be used to reshape tracheal cartilage using minimally invasive methods. The objectives of this study were to determine: (1) the dependence of tracheal cartilage shape change on temperature and laser dosimetry using heated saline bath immersion and laser irradiation, respectively, (2) the effect of temperature on the mechanical behavior of cartilage, and (3) tissue viability as a function of laser dosimetry. Materials and Methods Ex vivo rabbit trachea cartilage specimens were bent and secured around a cylinder (6 mm), and then immersed in a saline bath (45 and 72°C) for 5– 100 seconds. In separate experiments, tracheal specimens were irradiated with a diode laser (λ = 1.45 μm, 220–400 J/cm2). Mechanical analysis was then used to determine the elastic modulus in tension after irradiation. Fluorescent viability assays combined with laser scanning confocal microscopy (LSCM) were employed to image and identify thermal injury regions. Results Shape change transition zones, between 62 and 66°C in the saline heating bath and above power densities of 350 J/cm2 (peak temperatures 65±10°C) for laser irradiation were identified. Above these zones, the elastic moduli were higher (8.2±4 MPa) than at lower temperatures (4.5±3 MPa). LSCM identified significant loss of viable chondrocytes within the laser-irradiation zones. Conclusion Our results indicate a change in mechanical properties occurs with laser irradiation and further demonstrates that significant thermal damage is concurrent with clinically relevant shape change in the elastic cartilage tissues of the rabbit trachea using the present laser and dosimetry parameters.
Background and Objective Optical coherence tomography (OCT) has been used in limited settings to study peripheral nerve injury. The purpose of the study is to determine whether high-resolution OCT can be used to monitor nerve injury and regeneration in the rat sciatic nerve following crush injury, ligation, and transection with microsurgical repair. Study Design/Materials and Methods Forty-five rats were segregated into three groups. The right sciatic nerve was suture ligated (n = 15), cut then microsurgically repaired (n = 15), or crushed (n = 15). The left sciatic nerve served as the control; only surgical exposure and skin closure were performed. Each group was further divided into three subgroups where they were assigned survival durations of 4, 15, or 24 weeks. Following euthanasia, nerves were harvested, fixed in formalin, and imaged at the injury site, as well as proximal and distal ends. The OCT system resolution was approximately 7 μm in tissue with a 1,060 nm central wavelength. Results Control (uninjured) nerve tissue showed homogenous signal distribution to a relatively uniform depth; in contrast, damaged nerves showed irregular signal distribution and intensity. Changes in signal distribution were most significant at the injury site and distal regions. Increases in signal irregularity were evident during longer recovery times. Histological analysis determined that OCT imaging was limited to the surrounding perineurium and scar tissue. Conclusion OCT has the potential to be a valuable tool for monitoring nerve injury and repair, and the changes that accompany wound healing, providing clinicians with a non-invasive tool to treat nerve injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.