We present cleared tissue Axially Swept Light-Sheet Microscopy (ctASLM), which enables isotropic, subcellular resolution, high optical sectioning capability, and large field of view imaging over a broad range of immersion media. ctASLM can image live, expanded, and both aqueous and organic chemically cleared tissue preparations. Depending on the optical configuration, ctASLM provides up to 260 nm axial resolution, an improvement over confocal and other reported cleared tissue light-sheet microscopes by a factor 3-10. We image millimeter-scale tissues with subcellular 3D resolution, which enabled us to automatically detect with computer vision multicellular tissue architectures, individual cells, synaptic spines, and rare cell-cell interactions.Human tissues are composed of multiple polarized cell types organized in well-defined three-dimensional architectures. Interestingly, it has been shown that rare subsets of cells play a crucial role in disease progression, 1 and interdisciplinary efforts now aim to generate comprehensive atlases of human cells in diverse tissue types. To date, this has largely relied on massively parallel sequencing and machine learning-based analyses to identify unique sub-populations of cells. Combined with advanced imaging, such efforts could not only shed light on the diversity of cell types, but the biological context in which each population operates. However, imaging large tissues with subcellular resolution remains challenging due to the heterogeneous refractive index and composition of tissues, which results in complex aberrations and an increased scattering coefficient, both of which decrease spatial resolution and limit imaging depth. 2
Deterioration of brain capillary flow and architecture is a hallmark of aging and dementia. It remains unclear how loss of brain pericytes in these conditions contributes to capillary dysfunction. Here, we conduct cause-and-effect studies by optically ablating pericytes in adult and aged mice in vivo. Focal pericyte loss induces capillary dilation without blood-brain barrier disruption. These abnormal dilations are exacerbated in the aged brain, and result in increased flow heterogeneity in capillary networks. A subset of affected capillaries experience reduced perfusion due to flow steal. Some capillaries stall in flow and regress, leading to loss of capillary connectivity. Remodeling of neighboring pericytes restores endothelial coverage and vascular tone within days. Pericyte remodeling is slower in the aged brain, resulting in regions of persistent capillary dilation. These findings link pericyte loss to disruption of capillary flow and structure. They also identify pericyte remodeling as a therapeutic target to preserve capillary flow dynamics.
We present cleared tissue Axially Swept Light-Sheet Microscopy (ctASLM), which achieves sub-micron isotropic resolution, high optical sectioning capability, and large field of view imaging (870×870 µm 2 ) over a broad range of immersion media. ctASLM can image live, expanded, and both aqueous and organic chemically cleared tissue preparations and provides 2-to 5-fold better axial resolution than confocal or other reported cleared tissue light-sheet microscopes. We image millimeter-sized tissues with sub-micron 3D resolution, which enabled us to perform automated detection of cells and subcellular features such as dendritic spines.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.