Stem cell niches are specialized microenvironments that promote the maintenance of stem cells and regulate their function. Recent advances have improved our understanding of the niches that maintain adult haematopoietic stem cells (HSCs). These advances include new markers for HSCs and niche cells, systematic analyses of the expression patterns of niche factors, genetic tools for functionally identifying niche cells in vivo, and improved imaging techniques. Together, they have shown that HSC niches are perivascular in the bone marrow and spleen. Endothelial cells and mesenchymal stromal cells secrete factors that promote HSC maintenance in these niches, but other cell types also directly or indirectly regulate HSC niches.
Excessive accumulation of white adipose tissue (WAT) is the defining characteristic of obesity. WAT mass is composed primarily of mature adipocytes, which are generated through the proliferation and differentiation of adipocyte precursors (APs). While the production of new adipocytes contributes to WAT growth in obesity, little is known about the cellular and molecular mechanisms underlying adipogenesis in vivo. Here, we show that high-fat diet feeding in mice rapidly and transiently induces proliferation of APs within WAT to produce new adipocytes. Importantly, the activation of adipogenesis is specific to the perigonadal visceral depot in male mice, consistent with the patterns of obesogenic WAT growth observed in humans. Additionally, we find that in multiple models of obesity, the activation of APs is dependent upon the phosphoinositde 3-kinase (PI3K)-AKT2 pathway; however, the development of WAT does not require AKT2. These data indicate that developmental and obesogenic adipogenesis are regulated through distinct molecular mechanisms.
Summary The sexually dimorphic distribution of adipose tissue influences the development of obesity-associated pathologies. The accumulation of visceral white adipose tissue (VWAT) that occurs in males is detrimental to metabolic health, while accumulation of subcutaneous adipose tissue (SWAT) seen in females may be protective. Here, we show that adipocyte hyperplasia contributes directly to the differential fat distribution between the sexes. In male mice, high-fat diet (HFD) induces adipogenesis specifically in VWAT, while in females HFD induces adipogenesis in both VWAT and SWAT in a sex hormone-dependent manner. We also show that the activation of adipocyte precursors (APs), which drives adipocyte hyperplasia in obesity, is regulated by the adipose depot microenvironment and not by cell-intrinsic mechanisms. These findings indicate that APs are plastic cells, which respond to both local and systemic signals that influence their differentiation potential independent of depot origin. Therefore, depot-specific AP microenvironment niches coordinate adipose tissue growth and distribution.
The study of adipose tissue in vivo has been significantly advanced through the use of genetic mouse models. While the aP2-CreBI and aP2-CreSalk lines have been widely used to target adipose tissue, the specificity of these lines for adipocytes has recently been questioned. Here we characterize Cre recombinase activity in multiple cell populations of the major adipose tissue depots of these and other Cre lines using the membrane-Tomato/membrane-GFP (mT/mG) dual fluorescent reporter. We find that the aP2-CreBI and aP2-CreSalk lines lack specificity for adipocytes within adipose tissue, and that the aP2-CreBI line does not efficiently target adipocytes in white adipose depots. Alternatively, the Adiponectin-CreERT line shows high efficiency and specificity for adipocytes, while the PdgfRα-CreERUCL and PdgfRα-CreERJHU lines do not efficiently target adipocyte precursor cells in the major adipose depots. Instead, we show that the PdgfRα-Cre line is preferable for studies targeting adipocyte precursor cells in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.