The accumulation of aberrantly aggregated microtubule-associated protein tau (MAPT) 1 defines a spectrum of tauopathies, including Alzheimer's disease. Mutations in the MAPT gene cause frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), characterized by neuronal pathological tau inclusions in the form of neurofibrillary tangles and Pick bodies, and in some cases glial tau pathology. Increasing evidence points to the importance of prion-like seeding as a mechanism for the pathological spread in tauopathy and other neurodegenerative diseases. Herein, using a cell culture model, we examined a multitude of genetic FTDP-17 tau variants for their ability to be seeded by exogenous tau fibrils. Our findings revealed stark differences between FTDP-17 tau variants in their ability to be seeded, with variants at proline 301 and serine 320 showing robust aggregation with seeding. Similarly, we elucidated the importance of certain tau protein regions and unique residues, including the role of proline 301 in inhibiting tau aggregation. We also revealed potential barriers in cross-seeding between 3-repeat and 4-repeat tau isoforms. Overall, these differences alluded to potential mechanistic differences between wild-type and FTDP-17 tau variants, as well as different tau isoforms, in influencing tau aggregation. Furthermore, by combining two FTDP-17 tau variants (either P301L or P301S with S320F), we generated aggressive models of tauopathy that does not require exogenous seeding. These models will allow for rapid screening of potential therapeutics to alleviate tau aggregation without the need for exogenous tau fibrils. Together, these studies provide novel insights in the molecular determinants that modulate tau aggregation.Tauopathies are a spectrum of neurodegenerative diseases characterized by the presence of pathological inclusions composed of aberrantly aggregated and hyperphosphorylated microtubule-associated protein tau (MAPT). Tauopathies are pathologically and phenotypically diverse, and include Alzheimer's disease (AD), progressive supranuclear palsy, corticobasal degeneration, chronic traumatic encephalopathy, Pick's disease, and frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17)(1-4). Tau is abundant in neurons and expressed at lower levels in glia (1, 6, 7), and primarily stabilizes microtubules (MTs) among other diverse physiological functions (1,5,8,9). Six different isoforms of tau, ranging from 352 to 441 amino acids, are expressed in the adult human brain as a result of alternative splicing (10, 11). Differential splicing results in the inclusion or exclusion of the R2 MT-binding repeat, producing tau isoforms with either three (3R) or four (4R) repeats, respectively, and one or two N-terminal inserts (Figure 1).Over 50 mutations have been identified in the MAPT gene in families with 2,4,12 Tau Mutants and Seeding 2 disease, and patients typically experience disease onset at ~49 years of age with an average disease duration of 8.5 years (13). Certai...
Alterations in calcium homeostasis are widely reported to contribute to synaptic degeneration and neuronal loss in Alzheimer’s disease. Elevated cytosolic calcium concentrations lead to activation of the calcium-sensitive cysteine protease, calpain, which has a number of substrates known to be abnormally regulated in disease. Analysis of human brain has shown that calpain activity is elevated in AD compared to controls, and that calpain-mediated proteolysis regulates the activity of important disease-associated proteins including the tau kinases cyclin-dependent kinase 5 and glycogen kinase synthase-3. Here, we sought to investigate the likely temporal association between these changes during the development of sporadic AD using Braak staged post-mortem brain. Quantification of protein amounts in these tissues showed increased activity of calpain-1 from Braak stage III onwards in comparison to controls, extending previous findings that calpain-1 is upregulated at end-stage disease, and suggesting that activation of calcium-sensitive signalling pathways are sustained from early stages of disease development. Increases in calpain-1 activity were associated with elevated activity of the endogenous calpain inhibitor, calpastatin, itself a known calpain substrate. Activation of the tau kinases, glycogen-kinase synthase-3 and cyclin-dependent kinase 5 were also found to occur in Braak stage II-III brain, and these preceded global elevations in tau phosphorylation and the loss of post-synaptic markers. In addition, we identified transient increases in total amyloid precursor protein and pre-synaptic markers in Braak stage II-III brain, that were lost by end stage Alzheimer's disease, that may be indicative of endogenous compensatory responses to the initial stages of neurodegeneration. These findings provide insight into the molecular events that underpin the progression of Alzheimer's disease, and further highlight the rationale for investigating novel treatment strategies that are based on preventing abnormal calcium homeostasis or blocking increases in the activity of calpain or important calpain substrates.Electronic supplementary materialThe online version of this article (doi:10.1186/s40478-016-0299-2) contains supplementary material, which is available to authorized users.
It has been challenging to produce ex vivo models of the inclusion pathologies that are hallmark pathologies of many neurodegenerative diseases. Using three-dimensional mouse brain slice cultures (BSCs), we have developed a paradigm that rapidly and robustly recapitulates mature neurofibrillary inclusion and Lewy body formation found in Alzheimer’s and Parkinson’s disease, respectively. This was achieved by transducing the BSCs with recombinant adeno-associated viruses (rAAVs) that express α-synuclein or variants of tau. Notably, the tauopathy BSC model enables screening of small molecule therapeutics and tracking of neurodegeneration. More generally, the rAAV BSC “toolkit” enables efficient transduction and transgene expression from neurons, microglia, astrocytes, and oligodendrocytes, alone or in combination, with transgene expression lasting for many months. These rAAV-based BSC models provide a cost-effective and facile alternative to in vivo studies, and in the future can become a widely adopted methodology to explore physiological and pathological mechanisms related to brain function and dysfunction.
The spatiotemporal transmission of pathological tau in the brain is characteristic of Alzheimer's disease. Release of both soluble and abnormal tau species from healthy neurons is increased upon stimulation of neuronal activity. It is not yet understood whether the mechanisms controlling soluble tau release from healthy neurons is the same as those involved in the spread of pathological tau species. To begin to understand these events, we have studied tau distribution and release using organotypic brain slice cultures. The slices were cultured from postnatal wild-type and 3xTg-AD mice for up to 1 month. Tau distribution in subcellular compartments was examined by western blotting, and tau release into culture medium was determined using a sensitive sandwich ELISA. We show here that 3xTg-AD cultures have an accelerated development of pathological tau abnormalities including the redistribution of tau to synaptic and membrane compartments. The 3xTg-AD slice cultures show elevated basal tau release relative to total tau when compared with wild-type cultures. However, tau release from 3xTg-AD slices cannot be further stimulated when neuronal activity is increased with potassium chloride. Moreover, we report that there is an increased pool of dephosphorylated membrane-associated tau in conditions where tau release is increased. These data suggest that there may be differential patterns of tau release when using integrated slice culture models of wild-type and transgenic mouse brain, although it will be important to determine the effect of tau overexpression for these findings. These results further increase our knowledge of the molecular mechanisms underlying tau release and propagation in neurodegenerative tauopathies.
Background Cytoplasmic mislocalization and aggregation of TAR DNA-binding protein-43 (TDP-43) is a hallmark of the amyotrophic lateral sclerosis and frontotemporal dementia (ALS/FTD) disease spectrum, causing both nuclear loss-of-function and cytoplasmic toxic gain-of-function phenotypes. While TDP-43 proteinopathy has been associated with defects in nucleocytoplasmic transport, this process is still poorly understood. Here we study the role of karyopherin-β1 (KPNB1) and other nuclear import receptors in regulating TDP-43 pathology. Methods We used immunostaining, immunoprecipitation, biochemical and toxicity assays in cell lines, primary neuron and organotypic mouse brain slice cultures, to determine the impact of KPNB1 on the solubility, localization, and toxicity of pathological TDP-43 constructs. Postmortem patient brain and spinal cord tissue was stained to assess KPNB1 colocalization with TDP-43 inclusions. Turbidity assays were employed to study the dissolution and prevention of aggregation of recombinant TDP-43 fibrils in vitro. Fly models of TDP-43 proteinopathy were used to determine the effect of KPNB1 on their neurodegenerative phenotype in vivo. Results We discovered that several members of the nuclear import receptor protein family can reduce the formation of pathological TDP-43 aggregates. Using KPNB1 as a model, we found that its activity depends on the prion-like C-terminal region of TDP-43, which mediates the co-aggregation with phenylalanine and glycine-rich nucleoporins (FG-Nups) such as Nup62. KPNB1 is recruited into these co-aggregates where it acts as a molecular chaperone that reverses aberrant phase transition of Nup62 and TDP-43. These findings are supported by the discovery that Nup62 and KPNB1 are also sequestered into pathological TDP-43 aggregates in ALS/FTD postmortem CNS tissue, and by the identification of the fly ortholog of KPNB1 as a strong protective modifier in Drosophila models of TDP-43 proteinopathy. Our results show that KPNB1 can rescue all hallmarks of TDP-43 pathology, by restoring its solubility and nuclear localization, and reducing neurodegeneration in cellular and animal models of ALS/FTD. Conclusion Our findings suggest a novel NLS-independent mechanism where, analogous to its canonical role in dissolving the diffusion barrier formed by FG-Nups in the nuclear pore, KPNB1 is recruited into TDP-43/FG-Nup co-aggregates present in TDP-43 proteinopathies and therapeutically reverses their deleterious phase transition and mislocalization, mitigating neurodegeneration. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.