Background The US continues to face public health crises related to both chronic pain and opioid overdoses. Thirty percent of Americans suffer from chronic noncancer pain at an estimated yearly cost of over $600 billion. Most patients with chronic pain turn to primary care clinicians who must choose from myriad treatment options based on relative risks and benefits, patient history, available resources, symptoms, and goals. Recently, with attention to opioid-related risks, prescribing has declined. However, clinical experts have countered with concerns that some patients for whom opioid-related benefits outweigh risks may be inappropriately discontinued from opioids. Unfortunately, primary care clinicians lack usable tools to help them partner with their patients in choosing pain treatment options that best balance risks and benefits in the context of patient history, resources, symptoms, and goals. Thus, primary care clinicians and patients would benefit from patient-centered clinical decision support (CDS) for this shared decision-making process. Methods The objective of this 3-year project is to study the adaptation and implementation of an existing interoperable CDS tool for pain treatment shared decision making, with tailored implementation support, in new clinical settings in the OneFlorida Clinical Research Consortium. Our central hypothesis is that tailored implementation support will increase CDS adoption and shared decision making. We further hypothesize that increases in shared decision making will lead to improved patient outcomes, specifically pain and physical function. The CDS implementation will be guided by the Exploration, Preparation, Implementation, Sustainment (EPIS) framework. The evaluation will be organized by the Reach, Effectiveness, Adoption, Implementation, and Maintenance (RE-AIM) framework. We will adapt and tailor PainManager, an open source interoperable CDS tool, for implementation in primary care clinics affiliated with the OneFlorida Clinical Research Consortium. We will evaluate the effect of tailored implementation support on PainManager’s adoption for pain treatment shared decision making. This evaluation will establish the feasibility and obtain preliminary data in preparation for a multi-site pragmatic trial targeting the effectiveness of PainManager and tailored implementation support on shared decision making and patient-reported pain and physical function. Discussion This research will generate evidence on strategies for implementing interoperable CDS in new clinical settings across different types of electronic health records (EHRs). The study will also inform tailored implementation strategies to be further tested in a subsequent hybrid effectiveness-implementation trial. Together, these efforts will lead to important new technology and evidence that patients, clinicians, and health systems can use to improve care for millions of Americans who suffer from pain and other chronic conditions. Trial registration ClinicalTrials.gov, NCT05256394, Registered 25 February 2022.
Background Social determinants of health (SDoH), such as geographic neighborhoods, access to health care, education, and social structure, are important factors affecting people’s health and health outcomes. The SDoH of patients are scarcely documented in a discrete format in electronic health records (EHRs) but are often available in free-text clinical narratives such as physician notes. Innovative methods like natural language processing (NLP) are being developed to identify and extract SDoH from EHRs, but it is imperative that the input of key stakeholders is included as NLP systems are designed. Objective This study aims to understand the feasibility, challenges, and benefits of developing an NLP system to uncover SDoH from clinical narratives by conducting interviews with key stakeholders: (1) oncologists, (2) data analysts, (3) citizen scientists, and (4) patient navigators. Methods Individuals who frequently work with SDoH data were invited to participate in semistructured interviews. All interviews were recorded and subsequently transcribed. After coding transcripts and developing a codebook, the constant comparative method was used to generate themes. Results A total of 16 participants were interviewed (5 data analysts, 4 patient navigators, 4 physicians, and 3 citizen scientists). Three main themes emerged, accompanied by subthemes. The first theme, importance and approaches to obtaining SDoH, describes how every participant (n=16, 100%) regarded SDoH as important. In particular, proximity to the hospital and income levels were frequently relied upon. Communication about SDoH typically occurs during the initial conversation with the oncologist, but more personal information is often acquired by patient navigators. The second theme, SDoH exists in numerous forms, exemplified how SDoH arises during informal communication and can be difficult to enter into the EHR. The final theme, incorporating SDoH into health services research, addresses how more informed SDoH can be collected. One strategy is to empower patients so they are aware about the importance of SDoH, as well as employing NLP techniques to make narrative data available in a discrete format, which can provide oncologists with actionable data summaries. Conclusions Extracting SDoH from EHRs was considered valuable and necessary, but obstacles such as narrative data format can make the process difficult. NLP can be a potential solution, but as the technology is developed, it is important to consider how key stakeholders document SDoH, apply the NLP systems, and use the extracted SDoH in health outcome studies.
Objective. The COVID-19 pandemic created an unprecedented strain on the health care system, and administrators had to make many critical decisions to respond appropriately. This study sought to understand how health care administrators used data and information for decision making during the first 6 mo of the COVID-19 pandemic. Materials and Methods. We conducted semistructured interviews with administrators across University of Florida (UF) Health. We performed an inductive thematic analysis of the transcripts. Results. Four themes emerged from the interviews: 1) common types of health systems or hospital operations data; 2) public health and other external data sources; 3) data interaction, integration, and exchange; and 4) novelty and evolution in data, information, or tools used over time. Participants illustrated the organizational, public health, and regional information they considered essential (e.g., hospital census, community positivity rate, etc.). Participants named specific challenges they faced due to data quality and timeliness. Participants elaborated on the necessity of data integration, validation, and coordination across different boundaries (e.g., different hospital systems in the same metro areas, public health agencies at the local, state, and federal level, etc.). Participants indicated that even within the first 6 mo of the COVID-19 pandemic, the data and tools used for making critical decisions changed. Discussion. While existing medical informatics infrastructure can facilitate decision making in pandemic response, data may not always be readily available in a usable format. Interoperable infrastructure and data standardization across multiple health systems would help provide more reliable and timely information for decision making. Conclusion. Our findings contribute to future discussions of improving data infrastructure and developing harmonized data standards needed to facilitate critical decisions at multiple health care system levels. Highlights The study revealed common health systems or hospital operations data and information used in decision making during the first 6 mo of the COVID-19 pandemic. Participants described commonly used internal data sources, such as resource and financial reports and dashboards, and external data sources, such as federal, state, and local public health data. Participants described challenges including poor timeliness and limited local relevance of external data as well as poor integration of data sources within and across organizational boundaries. Results suggest the need for continued integration and standardization of health data to support health care administrative decision making during pandemics or other emergencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.