Malaria therapy, experimental, and epidemiological studies have shown that erythrocyte Duffy blood group-negative people, largely of African ancestry, are resistant to erythrocyte Plasmodium vivax infection. These findings established a paradigm that the Duffy antigen is required for P. vivax erythrocyte invasion. P. vivax is endemic in Madagascar, where admixture of Duffy-negative and Duffy-positive populations of diverse ethnic backgrounds has occurred over 2 millennia. There, we investigated susceptibility to P. vivax blood-stage infection and disease in association with Duffy blood group polymorphism. Duffy blood group genotyping identified 72% Duffy-negative individuals (FY*B ES /*B ES ) in community surveys conducted at eight sentinel sites. Flow cytometry and adsorption-elution results confirmed the absence of Duffy antigen expression on Duffy-negative erythrocytes. P. vivax PCR positivity was observed in 8.8% (42/476) of asymptomatic Duffy-negative people. Clinical vivax malaria was identified in Duffy-negative subjects with nine P. vivax monoinfections and eight mixed Plasmodium species infections that included P. vivax (4.9 and 4.4% of 183 participants, respectively). Microscopy examination of blood smears confirmed blood-stage development of P. vivax, including gametocytes. Genotyping of polymorphic surface and microsatellite markers suggested that multiple P. vivax strains were infecting Duffy-negative people. In Madagascar, P. vivax has broken through its dependence on the Duffy antigen for establishing human blood-stage infection and disease. Further studies are necessary to identify the parasite and host molecules that enable this Duffyindependent P. vivax invasion of human erythrocytes.erythrocyte | evolution | DARC | Madagascar
The national prevalence of CWP among working coal miners is increasing. This increase is most pronounced in central Appalachia. Current CWP prevalence estimates will likely be reflected in future trends for severe and disabling disease, including progressive massive fibrosis. Public Health Implications. Recently enacted protections to prevent coal mine dust exposure and identify CWP at its early stage remain essential to protect US coal miners.
BACKGROUND Global efforts to eliminate lymphatic filariasis are based on the annual mass administration of antifilarial drugs to reduce the microfilaria reservoir available to the mosquito vector. Insecticide-treated bed nets are being widely used in areas in which filariasis and malaria are coendemic. METHODS We studied five villages in which five annual mass administrations of antifilarial drugs, which were completed in 1998, reduced the transmission of Wuchereria bancrofti, one of the nematodes that cause lymphatic filariasis. A total of 21,899 anopheles mosquitoes were collected for 26 months before and 11 to 36 months after bed nets treated with long-lasting insecticide were distributed in 2009. We evaluated the status of filarial infection and the presence of W. bancrofti DNA in anopheline mosquitoes before and after the introduction of insecticide-treated bed nets. We then used a model of population dynamics to estimate the probabilities of transmission cessation. RESULTS Village-specific rates of bites from anopheline mosquitoes ranged from 6.4 to 61.3 bites per person per day before the bed-net distribution and from 1.1 to 9.4 bites for 11 months after distribution (P<0.001). During the same period, the rate of detection of W. bancrofti in anopheline mosquitoes decreased from 1.8% to 0.4% (P = 0.005), and the rate of detection of filarial DNA decreased from 19.4% to 14.9% (P = 0.13). The annual transmission potential was 5 to 325 infective larvae inoculated per person per year before the bed-net distribution and 0 after the distribution. Among all five villages with a prevalence of microfilariae of 2 to 38%, the probability of transmission cessation increased from less than 1.0% before the bed-net distribution to a range of 4.9 to 95% in the 11 months after distribution. CONCLUSIONS Vector control with insecticide-treated bed nets is a valuable tool for W. bancrofti elimination in areas in which anopheline mosquitoes transmit the parasite. (Funded by the U.S. Public Health Service and the National Institutes of Health.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.