BackgroundPatients with certain mutations in the gene encoding the slit diaphragm protein Nephrin fail to develop functional slit diaphragms and display severe proteinuria. Many adult-onset glomerulopathies also feature alterations in Nephrin expression and function. Nephrin signals from the podocyte slit diaphragm to the Actin cytoskeleton by recruiting proteins that can interact with C3G, a guanine nucleotide exchange factor of the small GTPase Rap1. Because Rap activity affects formation of focal adhesions, we hypothesized that Nephrin transmits signals to the Integrin receptor complex, which mediates podocyte adhesion to the extracellular matrix.MethodsTo investigate Nephrin’s role in transmitting signals to the Integrin receptor complex, we conducted genetic studies in Drosophila nephrocytes and validated findings from Drosophila in a cultured human podocyte model.ResultsDrosophila nephrocytes form a slit diaphragm–like filtration barrier and express the Nephrin ortholog Sticks and stones (Sns). A genetic screen identified c3g as necessary for nephrocyte function. In vivo, nephrocyte-specific gene silencing of sns or c3g compromised nephrocyte filtration and caused nephrocyte diaphragm defects. Nephrocytes with impaired Sns or C3G expression displayed an altered localization of Integrin and the Integrin-associated protein Talin. Furthermore, gene silencing of c3g partly rescued nephrocyte diaphragm defects of an sns overexpression phenotype, pointing to genetic interaction of sns and c3g in nephrocytes. We also found that activated Nephrin recruited phosphorylated C3G and resulted in activation of Integrin β1 in cultured podocytes.ConclusionsOur findings suggest that Nephrin can mediate a signaling pathway that results in activation of Integrin β1 at focal adhesions, which may affect podocyte attachment to the extracellular matrix.
The foot processes of podocytes exhibit a dynamic actin cytoskeleton, which maintains their complex cell structure and antagonizes the elastic forces of the glomerular capillary. Interdigitating secondary foot processes form a highly selective filter for proteins in the kidney, the slit membrane. Knockdown of slit membrane components such as Nephrin or Neph1 and cytoskeletal adaptor proteins such as CD2AP in mice leads to breakdown of the filtration barrier with foot process effacement, proteinuria, and early death of the mice. Less is known about the crosstalk between the slit membrane‐associated proteins and cytoskeletal components inside the podocyte foot processes. Our study shows that LASP‐1, an actin‐binding protein, is highly expressed in podocytes. Electron microscopy studies demonstrate that LASP‐1 is found at the slit membrane suggesting a role in anchoring slit membrane components to the actin cytoskeleton. Live cell imaging experiments with transfected podocytes reveal that LASP‐1 is either part of a highly dynamic granular complex or a static, actin cytoskeleton‐bound protein. We identify CD2AP as a novel LASP‐1 binding partner that regulates its association with the actin cytoskeleton. Activation of the renin‐angiotensin‐aldosterone system, which is crucial for podocyte function, leads to phosphorylation and altered localization of LASP‐1. In vivo studies using the Drosophila nephrocyte model indicate that Lasp is necessary for the slit membrane integrity and functional filtration.
Glomerular podocytes build, with their intercellular junctions, part of the kidney filter. The podocyte cell adhesion protein, nephrin, is essential for developing and maintaining slit diaphragms as functional loss in humans results in heavy proteinuria. Nephrin expression and function are also altered in many adult-onset glomerulopathies. Nephrin signals from the slit diaphragm to the actin cytoskeleton and integrin β1 at focal adhesions by recruiting Crk family proteins, which can interact with the Rap guanine nucleotide exchange factor 1 C3G. As Rap1 activity affects focal adhesion formation, we hypothesize that nephrin signals via Rap1 to integrin β. To address this issue, we combined Drosophila in vivo and mammalian cell culture experiments. We find that Rap1 is necessary for correct targeting of integrin β to focal adhesions in Drosophila nephrocytes, which also form slit diaphragm-like structures. In the fly, the Rap1 activity is important for signaling of the nephrin ortholog to integrin β, as well as for nephrin-dependent slit diaphragm integrity. We show by genetic interaction experiments that Rap1 functions downstream of nephrin signaling to integrin β and downstream of nephrin signaling necessary for slit diaphragm integrity. Similarly, in human podocyte culture, nephrin activation results in increased activation of Rap1. Thus, Rap1 is necessary for downstream signal transduction of nephrin to integrin β.
Significance Statement Endocytosis, recycling, and degradation of proteins are essential functions of mammalian cells, especially for terminally differentiated cells with limited regeneration rates and complex morphology, such as podocytes. To improve our understanding on how disturbances of these trafficking pathways are linked to podocyte depletion and slit diaphragm (SD) injury, the authors explored the role of the small GTPase Rab7, which is linked to endosomal, lysosomal, and autophagic pathways, using as model systems mice and Drosophila with podocyte-specific or nephrocyte-specific loss of Rab7, and a human podocyte cell line depleted for Rab7. Their findings point to maturation and fusion events during endolysosomal and autophagic maturation as key processes for podocyte homeostasis and function and identify altered lysosomal pH values as a putative novel mechanism for podocytopathies. Background Endocytosis, recycling, and degradation of proteins are essential functions of mammalian cells, especially for terminally differentiated cells with limited regeneration rates, such as podocytes. How disturbances within these trafficking pathways may act as factors in proteinuric glomerular diseases is poorly understood. Methods To explore how disturbances in trafficking pathways may act as factors in proteinuric glomerular diseases, we focused on Rab7, a highly conserved GTPase that controls the homeostasis of late endolysosomal and autophagic processes. We generated mouse and Drosophila in vivo models lacking Rab7 exclusively in podocytes or nephrocytes, and performed histologic and ultrastructural analyses. To further investigate Rab7 function on lysosomal and autophagic structures, we used immortalized human cell lines depleted for Rab7. Results Depletion of Rab7 in mice, Drosophila, and immortalized human cell lines resulted in an accumulation of diverse vesicular structures resembling multivesicular bodies, autophagosomes, and autoendolysosomes. Mice lacking Rab7 developed a severe and lethal renal phenotype with early-onset proteinuria and global or focal segmental glomerulosclerosis, accompanied by an altered distribution of slit diaphragm proteins. Remarkably, structures resembling multivesicular bodies began forming within 2 weeks after birth, prior to the glomerular injuries. In Drosophila nephrocytes, Rab7 knockdown resulted in the accumulation of vesicles and reduced slit diaphragms. In vitro, Rab7 knockout led to similar enlarged vesicles and altered lysosomal pH values, accompanied by an accumulation of lysosomal marker proteins. Conclusions Disruption within the final common pathway of endocytic and autophagic processes may be a novel and insufficiently understood mechanism regulating podocyte health and disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.