SummaryTo better characterize aging in mice, the Jackson Aging Center carried out a lifespan study of 31 geneticallydiverse inbred mouse strains housed in a specific pathogen-free facility. Clinical assessments were carried out every 6 months, measuring multiple age-related phenotypes including neuromuscular, kidney and heart function, body composition, bone density, hematology, hormonal levels, and immune system parameters. In a concurrent cross-sectional study of the same 31 strains at 6, 12, and 20 months, more invasive measurements were carried out followed by necropsy to assess apoptosis, DNA repair, chromosome fragility, and histopathology. In this report, which is the initial paper of a series, the study design, median lifespans, and circulating insulinlike growth factor 1 (IGF1) levels at 6, 12, and 18 months are described for the first cohort of 32 females and 32 males of each strain. Survival curves varied dramatically among strains with the median lifespans ranging from 251 to 964 days. Plasma IGF1 levels, which also varied considerably at each time point, showed an inverse correlation with a median lifespan at 6 months (R = )0.33, P = 0.01). This correlation became stronger if the shortlived strains with a median lifespan < 600 days were removed from the analysis (R = )0.53, P < 0.01). These results support the hypothesis that the IGF1 pathway plays a key role in regulating longevity in mice and indicates that common genetic mechanisms may exist for regulating IGF1 levels and lifespan.
Smallie (slie), a spontaneous, autosomal-recessive mutation causes dwarfing and infertility in mice. The purpose of this study was to determine and characterize the underlying molecular genetic basis for its phenotype. The slie locus was mapped to chromosome 1, and fine-structure mapping narrowed the slie allele within 2 Mb between genetic markers D1Mit36 and Mpz. To pinpoint the underlying mutation quantitative real-time PCR was used to measure the relative expression levels for the genes residing within this region. Expression of one gene, Ddr2, which encodes discoidin domain receptor 2 (DDR2), was absent in slie homozygote mice. Genomic sequencing analysis detected a 150-kb deletion that extended into the Ddr2 gene transcript. Detailed phenotype analysis revealed that gonadal dysregulation underlies infertility in slie mice because all females were anovulatory and most adult males lacked spermatogenesis. The pituitary gland of prepubertal slie mice was smaller than in wild-type mice. The basal levels and gene expression for pituitary and hypothalamic hormones, and gene expression for hypothalamic-releasing hormones, were not significantly different between slie and wild-type mice. Circulating levels of IGF-1 did not differ in slie mice despite lower Igf-1 mRNA expression in the liver. After exogenous gonadotropin administration, the levels of secreted steroid hormones in both male and female adult slie mice were blunted compared to adult wild-type, but was similar to prepubertal wild-type mice. Taken together, our results indicate that the absence of DDR2 leads to growth retardation and gonadal dysfunction due to peripheral defects in hormonal-responsive pathways in slie mice.
Histone deacetylases (HDACs) are enzymes that regulate protein functions by catalyzing the removal of acetyl and acyl groups from lysine residues. They play pivotal roles in governing cell behaviors and are indispensable in numerous biological processes. HDAC11, the last identified and sole member of class IV HDACs, was reported over a decade ago. However, its physiological function remains poorly understood. Here, we report that HDAC11 knockout mice are resistant to high-fat diet-induced obesity and metabolic syndrome, suggesting that HDAC11 functions as a crucial metabolic regulator. Depletion of HDAC11 significantly enhanced insulin sensitivity and glucose tolerance, attenuated hypercholesterolemia, and decreased hepatosteatosis and liver damage. Mechanistically, HDAC11 deficiency boosts energy expenditure through promoting thermogenic capacity, which attributes to the elevation of uncoupling protein 1 (UCP1) expression and activity in brown adipose tissue. Moreover, loss of HDAC11 activates the adiponectin-AdipoR-AMPK pathway in the liver, which may contribute to a reversal in hepatosteatosis. Overall, our findings distinguish HDAC11 as a novel regulator of obesity, with potentially important implications for obesity-related disease treatment.
Nephronophthisis (NPHP) is an autosomal recessive kidney disease that is often associated with vision and/or brain defects. To date, 11 genes are known to cause NPHP. The gene products, while structurally unrelated, all localize to cilia or centrosomes. Although mouse models of NPHP are available for 9 of the 11 genes, none has been described for nephronophthisis 4 (Nphp4). Here we report a novel, chemically induced mutant, nmf192, that bears a nonsense mutation in exon 4 of Nphp4. Homozygous mutant Nphp4(nmf192/nmf192) mice do not exhibit renal defects, phenotypes observed in human patients bearing mutations in NPHP4, but they do develop severe photoreceptor degeneration and extinguished rod and cone ERG responses by 9 weeks of age. Photoreceptor outer segments (OS) fail to develop properly, and some OS markers mislocalize to the inner segments and outer nuclear layer in the Nphp4(nmf192/nmf192) mutant retina. Despite NPHP4 localization to the transition zone in the connecting cilia (CC), the CC appear to be normal in structure and ciliary transport function is partially retained. Likewise, synaptic ribbons develop normally but then rapidly degenerate by P14. Finally, Nphp4(nmf192/nmf192) male mutants are sterile and show reduced sperm motility and epididymal sperm counts. Although Nphp4(nmf192/nmf192) mice fail to recapitulate the kidney phenotype of NPHP, they will provide a valuable tool to further elucidate how NPHP4 functions in the retina and male reproductive organs.
The nmf240 phenotype closely resembles that reported for Clcn2 knockout mice. The observation that heterozygous nmf240 mice present with a reduced ERG light peak component suggests that CLCN2 is necessary for the generation of this response component.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.