Cancer vaccines targeting patient-specific neoantigens have emerged as a promising strategy for improving responses to immune checkpoint blockade. However, neoantigenic peptides are poorly immunogenic and inept at stimulating CD8 + T cell responses, motivating a need for new vaccine technologies that enhance their immunogenicity. The stimulator of interferon genes (STING) pathway is an endogenous mechanism by which the innate immune system generates an immunological context for priming and mobilizing neoantigen-specific T cells. Owing to this critical role in tumor immune surveillance, a synthetic cancer nanovaccine platform (nanoSTING-vax) was developed that mimics immunogenic cancer cells in its capacity to efficiently promote co-delivery of peptide antigens and the STING agonist, cGAMP. The co-loading of cGAMP and peptides into pH-responsive, endosomolytic polymersomes promoted the coordinated delivery of both cGAMP and peptide antigens to the cytosol, thereby eliciting inflammatory cytokine production, co-stimulatory marker expression, and antigen cross-presentation. Consequently, nanoSTING-vax significantly enhanced CD8 + T cell responses to a range of peptide antigens. Therapeutic immunization with nanoSTING-vax, in combination with immune checkpoint blockade, inhibited tumor growth in multiple murine tumor models, even leading to complete tumor rejection and generation of durable antitumor immune memory. Collectively, this work establishes nanoSTING-vax as a versatile platform for enhancing immune responses to neoantigen-targeted cancer vaccines.
In recent years, there has been an increasing interest in designing delivery systems to enhance the efficacy of RNA-based therapeutics. Here, we have synthesized copolymers comprised of dimethylaminoethyl methacrylate (DMAEMA) or diethylaminoethyl methacrylate (DEAEMA) copolymerized with alkyl methacrylate monomers ranging from 2 to 12 carbons, and developed a high throughput workflow for rapid investigation of their applicability for mRNA delivery. The structure activity relationship revealed that the mRNA encapsulation efficiency is improved by increasing the cationic density and use of shorter alkyl side chains (2–6 carbons). Minimal cytotoxicity was observed when using DEAEMA-co-BMA (EB) polyplexes up to 18 h after dosing, independent of a poly(ethylene glycol) (PEG) first block. The lowest molecular weight polymer (EB10,250) performed best, exhibiting greater transfection than polyethyenimine (PEI) based upon the number of cells transfected and mean intensity. Conventional investigations into the performance of polymeric materials for mRNA delivery is quite tedious, consequently limiting the number of materials and formulation conditions that can be studied. The high throughput approach presented here can accelerate the screening of polymeric systems and paves the way for expanding this generalizable approach to assess various materials for mRNA delivery.
Surface‐enhanced Raman spectroscopy (SERS) has potential for unique clinical, environmental, and military applications, among many others, but it is limited by a rapid decrease in signal with distance from the sensing surface. For this reason, much study of SERS‐based biosensing involves chemical or physical adsorption of analytes to an active surface. Adsorption, however, limits the types of analytes that can be detected and detection sensitivity. The three‐dimensional closely packed architecture of zinc oxide (ZnO) nanowires decorated with silver nanoparticles increases SERS intensity, allowing for adsorption‐free biosensing. This approach greatly expands the potential applications of Raman spectroscopy as a biosensing technique. This work demonstrates a significant SERS enhancement from silver nanoparticle‐decorated ZnO nanoprobes to the Raman spectra of crystal violet, melamine, and adenine solutions. These enhancements were quantified by comparing the intensity of Raman peaks from each of the three solutions through ZnO nanowires decorated with silver nanoparticles with that through bare ZnO nanowires. Estimated enhancement of the Raman signal accounted for the volume difference between solution affected by SERS and solution sensed by the Raman system. More importantly, the detected SERS signal is from molecules in solution and unadsorbed to the sensing surfaces. This lack of adsorption was confirmed by tracking the SERS enhancement of a crystal violet Raman peak over time. This greatly enhances the value and flexibility of Raman spectroscopy as a detection technique for a wide variety of applications. Copyright © 2017 John Wiley & Sons, Ltd.
When compartmentally mislocalized within cells, nucleic acids can be exceptionally immunostimulatory and can even trigger the immune-mediated elimination of cancer. Specifically, the accumulation of double-stranded DNA in the cytosol can efficiently promote antitumor immunity by activating the cGAMP synthase (cGAS) / stimulator of interferon genes (STING) cellular signaling pathway. Targeting this cytosolic DNA sensing pathway with interferon stimulatory DNA (ISD) is therefore an attractive immunotherapeutic strategy for the treatment of cancer. However, the therapeutic activity of ISD is limited by several drug delivery barriers, including susceptibility to deoxyribonuclease degradation, poor cellular uptake, and inefficient cytosolic delivery. Here, we describe the development of a nucleic acid immunotherapeutic, NanoISD, which overcomes critical delivery barriers that limit the activity of ISD and thereby promotes antitumor immunity through the pharmacological activation of cGAS at the forefront of the STING pathway. NanoISD is a nanoparticle formulation that has been engineered to confer deoxyribonuclease resistance, enhance cellular uptake, and promote endosomal escape of ISD into the cytosol, resulting in potent activation of the STING pathway via cGAS. NanoISD mediates the local production of proinflammatory cytokines via STING signaling. Accordingly, the intratumoral administration of NanoISD induces the infiltration of natural killer cells and T lymphocytes into murine tumors. The therapeutic efficacy of NanoISD is demonstrated in preclinical tumor models by attenuated tumor growth, prolonged survival, and an improved response to immune checkpoint blockade therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.