Portable systems demand energy efficiency in order to maximize battery life. IRAM architectures, which combine DRAM and a processor on the same chip in a DRAM process, are more energy efficient than conventional systems. The high density of DRAM permits a much larger amount of memory on-chip than a traditional SRAM cache design in a logic process. This allows most or all IRAM memory accesses to be satisfied on-chip. Thus there is much less need to drive high-capacitance off-chip buses, which contribute significantly to the energy consumption of a system. To quantify this advantage we apply models of energy consumption in DRAM and SRAM memories to results from cache simulations of applications reflective of personal productivity tasks on low power systems. We find that IRAM memory hierarchies consume as little as 22% of the energy consumed by a conventional memory hierarchy for memory-intensive applications, while delivering comparable performance. Furthermore, the energy consumed by a system consisting of an IRAM memory hierarchy combined with an energy efficient CPU core is as little as 40% of that of the same CPU core with a traditional memory hierarchy.
To serve users quickly, Web service providers build infrastructure closer to clients and use multi-stage transport connections. Although these changes reduce client-perceived round-trip times, TCP's current mechanisms fundamentally limit latency improvements. We performed a measurement study of a large Web service provider and found that, while connections with no loss complete close to the ideal latency of one round-trip time, TCP's timeout-driven recovery causes transfers with loss to take five times longer on average. In this paper, we present the design of novel loss recovery mechanisms for TCP that judiciously use redundant transmissions to minimize timeout-driven recovery. Proactive, Reactive, and Corrective are three qualitatively-different, easily-deployable mechanisms that (1) proactively recover from losses, (2) recover from them as quickly as possible, and (3) reconstruct packets to mask loss. Crucially, the mechanisms are compatible both with middleboxes and with TCP's existing congestion control and loss recovery. Our large-scale experiments on Google's production network that serves billions of flows demonstrate a 23% decrease in the mean and 47% in 99th percentile latency over today's TCP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.