Reinforcement learning (RL) can enable task-oriented dialogue systems to steer the conversation towards successful task completion. In an end-to-end setting, a response can be constructed in a word-level sequential decision making process with the entire system vocabulary as action space.Policies trained in such a fashion do not require expert-defined action spaces, but they have to deal with large action spaces and long trajectories, making RL impractical. Using the latent space of a variational model as action space alleviates this problem. However, current approaches use an uninformed prior for training and optimize the latent distribution solely on the context. It is therefore unclear whether the latent representation truly encodes the characteristics of different actions. In this paper, we explore three ways of leveraging an auxiliary task to shape the latent variable distribution: via pre-training, to obtain an informed prior, and via multitask learning. We choose response auto-encoding as the auxiliary task, as this captures the generative factors of dialogue responses while requiring low computational cost and neither additional data nor labels. Our approach yields a more action-characterized latent representations which support end-to-end dialogue policy optimization and achieves state-of-the-art success rates. These results warrant a more wide-spread use of RL in end-to-end dialogue models.
Task-oriented dialog systems rely on dialog state tracking (DST) to monitor the user's goal during the course of an interaction. Multidomain and open-vocabulary settings complicate the task considerably and demand scalable solutions. In this paper we present a new approach to DST which makes use of various copy mechanisms to fill slots with values. Our model has no need to maintain a list of candidate values. Instead, all values are extracted from the dialog context on-thefly. A slot is filled by one of three copy mechanisms: (1) Span prediction may extract values directly from the user input; (2) a value may be copied from a system inform memory that keeps track of the system's inform operations; (3) a value may be copied over from a different slot that is already contained in the dialog state to resolve coreferences within and across domains. Our approach combines the advantages of span-based slot filling methods with memory methods to avoid the use of value picklists altogether. We argue that our strategy simplifies the DST task while at the same time achieving state of the art performance on various popular evaluation sets including Mul-tiWOZ 2.1, where we achieve a joint goal accuracy beyond 55%.
Generalizing dialogue state tracking (DST) to new data is especially challenging due to the strong reliance on abundant and fine-grained supervision during training. Sample sparsity, distributional shift, and the occurrence of new concepts and topics frequently lead to severe performance degradation during inference. In this paper we propose a training strategy to build extractive DST models without the need for fine-grained manual span labels. Two novel input-level dropout methods mitigate the negative impact of sample sparsity. We propose a new model architecture with a unified encoder that supports value as well as slot independence by leveraging the attention mechanism. We combine the strengths of triple copy strategy DST and value matching to benefit from complementary predictions without violating the principle of ontology independence. Our experiments demonstrate that an extractive DST model can be trained without manual span labels. Our architecture and training strategies improve robustness towards sample sparsity, new concepts, and topics, leading to state-of-the-art performance on a range of benchmarks. We further highlight our model’s ability to effectively learn from non-dialogue data.
Dialog state tracking (DST) suffers from severe data sparsity. While many natural language processing (NLP) tasks benefit from transfer learning and multi-task learning, in dialog these methods are limited by the amount of available data and by the specificity of dialog applications. In this work, we successfully utilize non-dialog data from unrelated NLP tasks to train dialog state trackers. This opens the door to the abundance of unrelated NLP corpora to mitigate the data sparsity issue inherent to DST.
Reinforcement learning (RL) can enable task-oriented dialogue systems to steer the conversation towards successful task completion. In an end-to-end setting, a response can be constructed in a word-level sequential decision making process with the entire system vocabulary as action space.Policies trained in such a fashion do not require expert-defined action spaces, but they have to deal with large action spaces and long trajectories, making RL impractical. Using the latent space of a variational model as action space alleviates this problem. However, current approaches use an uninformed prior for training and optimize the latent distribution solely on the context. It is therefore unclear whether the latent representation truly encodes the characteristics of different actions. In this paper, we explore three ways of leveraging an auxiliary task to shape the latent variable distribution: via pre-training, to obtain an informed prior, and via multitask learning. We choose response auto-encoding as the auxiliary task, as this captures the generative factors of dialogue responses while requiring low computational cost and neither additional data nor labels. Our approach yields a more action-characterized latent representations which support end-to-end dialogue policy optimization and achieves state-of-the-art success rates. These results warrant a more wide-spread use of RL in end-to-end dialogue models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.